Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Assessment will usually include an interview with the child’s caregiver, observation of the child in an unstructured setting, a hearing test, and standardized tests of language. There is a wide range of language assessments in English. Some are restricted for use by experts in speech-language pathology: speech and language therapists (SaLTs/SLTs) in the UK, speech-language pathologists (SLPs) in the US and Australia. A commonly used test battery for diagnosis of DLD is the Clinical Evaluation of Language Fundamentals (CELF).
Assessments that can be completed by a parent or teacher can be useful to identify children who may require more in-depth evaluation. The Children’s Communication Checklist (CCC–2) is a parent questionnaire suitable for assessing everyday use of language in children aged 4 years and above who can speak in sentences.
Informal assessments, such as language samples, are often used by speech-language therapists/pathologists to complement formal testing and give an indication of the child's language in a more naturalistic context. A language sample may be of a conversation or narrative retell. In a narrative language sample, an adult may tell the child a story using a wordless picture book (e.g. Frog Where Are You?, Mayer, 1969), then ask the child to use the pictures and tell the story back. Language samples can be transcribed using computer software such as the Systematic Analysis of Language Software, and then analyzed for a range of features: e.g., the grammatical complexity of the child's utterances, whether the child introduces characters to their story or jumps right in, whether the events follow a logical order, and whether the narrative includes a main idea or theme and supporting details.
Assessment will usually include an interview with the child’s caregiver, observation of the child in an unstructured setting, a hearing test, and standardized tests of language and nonverbal ability. There is a wide range of language assessments in English. Some are restricted for use by speech and language professionals (therapists or SALTs in the UK, speech-language pathologists, SLPs, in the US and Australia).
A commonly used test battery for diagnosis of SLI is the Clinical Evaluation of Language Fundamentals (CELF).
Assessments that can be completed by a parent or teacher can be useful to identify children who may require more in-depth evaluation.
The Grammar and Phonology Screening (GAPS) test is a quick (ten minute) simple and accurate screening test developed and standardized in the UK. It is suitable for children from 3;4 to 6;8 years;months and can be administered by professionals and non-professionals (including parents) alike, and has been demonstrated to be highly accurate (98% accuracy) in identifying impaired children who need specialist help vs non-impaired children. This makes it potentially a feasible test for widespread screening.
The Children’s Communication Checklist (CCC–2) is a parent questionnaire suitable for testing language skills in school-aged children.
Informal assessments, such as language samples, may also be used. This procedure is useful when the normative sample of a given test is inappropriate for a given child, for instance, if the child is bilingual and the sample was of monolingual children. It is also an ecologically valid measure of all aspects of language (e.g. semantics, syntax, pragmatics, etc.).
To complete a language sample, the SLP will spend about 15 minutes talking with the child. The sample may be of a conversation (Hadley, 1998), or narrative retell. In a narrative language sample, the SLP will tell the child a story using a wordless picture book (e.g. "Frog Where Are You?", Mayer, 1969), then ask the child to use the pictures and tell the story back.
Language samples are typically transcribed using computer software such as the Systematic Analysis of Language Software (SALT, Miller et al. 2012), and then analyzed. For example, the SLP might look for whether the child introduces characters to their story or jumps right in, whether the events follow a logical order, and whether the narrative includes a main idea or theme and supporting details.
DLD is defined purely in behavioural terms: there is no biological test. There are three points that need to be met for a diagnosis of DLD:
1. The child has language difficulties that create obstacles to communication or learning in everyday life,
2. The child's language problems are unlikely to resolve by five years of age, and
3. The problems are not associated with a known biomedical condition such as brain injury, neurodegenerative conditions, genetic conditions or chromosome disorders such as Down Syndrome, sensorineural hearing loss, or Autism Spectrum Disorder or Intellectual Disability.
For research and epidemiological purposes, specific cutoffs on language assessments have been used to document the first criterion. Tomblin et al. proposed the EpiSLI criterion, based on five composite scores representing performance in three domains of language (vocabulary, grammar, and narration) and two modalities (comprehension and production). Children scoring in the lowest 10% on two or more composite scores are identified as having language disorder.
The second criterion, persistence of language problems, can be difficult to judge in a young child, but longitudinal studies have shown that difficulties are less likely to resolve for children who have poor language comprehension, rather than difficulties confined to expressive language. In addition, children with isolated difficulties in just one of the areas noted under 'subtypes' tend to make better progress than those whose language is impaired in several areas.
The third criterion specifies that DLD is used for children whose language disorder is not part of another biomedical condition, such as a genetic syndrome, a sensorineural hearing loss, neurological disease, Autism Spectrum Disorder or Intellectual Disability – these were termed 'differentiating conditions' by the CATALISE panel. Language disorders occurring with these conditions need to be assessed and children offered appropriate intervention, but a terminological distinction is made so that these cases would be diagnosed as Language Disorder associated with ___, with the main diagnosis being specified: e.g. "Language Disorder associated with Autism Spectrum Disorder." The reasoning behind these diagnostic distinctions is discussed further by Bishop (2017).
Epidemiological surveys, in the US and Canada, estimated the prevalence of SLI in 5-year-olds at around 7 percent. However, neither study adopted the stringent 'discrepancy' criteria of the Diagnostic and Statistical Manual of Mental Disorders or ICD-10; SLI was diagnosed if the child scored below cut-off on standardized language tests, but had a nonverbal IQ of 90 or above and no other exclusionary criteria.
1. SCAN is the most common tool for diagnosing APD, and it also standardized. It is composed for four subsets: discrimination of monaurally presented single words against background noise, acoustically degraded single words, dichotically presented single words, sentence stimuli. Different versions of the test are used depending on the age of the patient.
2. Random Gap Detection Test (RGDT) is also a standardized test. It assesses an individual’s gap detection threshold of tones and white noise. The exam includes stimuli at four different frequencies (500, 1000, 2000, and 4000 Hz) and white noise clicks of 50 ms duration. It is a useful test because it provides an index of auditory temporal resolution. In children, an overall gap detection threshold greater than 20 ms means they have failed.
3. Gaps in Noise Test (GIN) also measures temporal resolution by testing the patient's gap detection threshold in white noise.
4. Pitch Patterns Sequence Test (PPT) and Duration Patterns Sequence Test (DPT) measure auditory pattern identification. The PPS has s series of three tones presented at either of two pitches (high or low). Meanwhile, the DPS has a series of three tones that vary in duration rather than pitch (long or short). Patients are then asked to describe the pattern of pitches presented.
Many normed assessments can be used in evaluating skills in the primary academic domains: reading, including word recognition, fluency, and comprehension; mathematics, including computation and problem solving; and written expression, including handwriting, spelling and composition.
The most commonly used comprehensive achievement tests include the Woodcock-Johnson IV (WJ IV), Wechsler Individual Achievement Test II (WIAT II), the Wide Range Achievement Test III (WRAT III), and the Stanford Achievement Test–10th edition. These tests include measures of many academic domains that are reliable in identifying areas of difficulty.
In the reading domain, there are also specialized tests that can be used to obtain details about specific reading deficits. Assessments that measure multiple domains of reading include Gray's Diagnostic Reading Tests–2nd edition (GDRT II) and the Stanford Diagnostic Reading Assessment. Assessments that measure reading subskills include the Gray Oral Reading Test IV – Fourth Edition (GORT IV), Gray Silent Reading Test, Comprehensive Test of Phonological Processing (CTOPP), Tests of Oral Reading and Comprehension Skills (TORCS), Test of Reading Comprehension 3 (TORC-3), Test of Word Reading Efficiency (TOWRE), and the Test of Reading Fluency. A more comprehensive list of reading assessments may be obtained from the Southwest Educational Development Laboratory.
The purpose of assessment is to determine what is needed for intervention, which also requires consideration of contextual variables and whether there are comorbid disorders that must also be identified and treated, such as behavioral issues or language delays. These contextual variables are often assessed using parent and teacher questionnaire forms that rate the students' behaviors and compares them to standardized norms.
However, caution should be made when suspecting the person with a learning disability may also have dementia, especially as people with Down's syndrome may have the neuroanatomical profile but not the associated clinical signs and symptoms. Examination can be carried out of executive functioning as well as social and cognitive abilities but may need adaptation of standardized tests to take account of special needs.
It has been discovered that APD and ADHD present overlapping symptoms. Below is a ranked order of behavioral symptoms that are most frequently observed in each disorder. Professionals evaluated the overlap of symptoms between the two disorders. The order below is of symptoms that are almost always observed. This chart proves that although the symptoms listed are different, it is easy to get confused between many of them.
There is a high rate of co-occurrence between AD/HD and CAPD. Research shows that 84% of children with APD have confirmed or suspected ADHD. Co-occurrence between ADHD and APD is 41% for children with confirmed diagnosis of ADHD, and 43% for children suspected of having ADHD.
Studies have failed to find clear evidence that language delay can be prevented by training or educating health care professionals in the subject. Overall, some of the reviews show positive results regarding interventions in language delay, but are not curative. (Commentary - Early Identification of Language Delays, 2005)
Learning disabilities can be categorized by either the type of information processing affected by the disability or by the specific difficulties caused by a processing deficit.
In 2006, the U.S. Department of Education indicated that more than 1.4 million students were served in the public schools' special education programs under the speech or language impairment category of IDEA 2004. This estimate does not include children who have speech/language problems secondary to other conditions such as deafness; this means that if all cases of speech or language impairments were included in the estimates, this category of impairment would be the largest. Another source has estimated that communication disorders—a larger category, which also includes hearing disorders—affect one of every 10 people in the United States.
ASHA has cited that 24.1% of children in school in the fall of 2003 received services for speech or language disorders—this amounts to a total of 1,460,583 children between 3 –21 years of age. Again, this estimate does not include children who have speech/language problems secondary to other conditions. Additional ASHA prevalence figures have suggested the following:
- Stuttering affects approximately 4% to 5% of children between the ages of 2 and 4.
- ASHA has indicated that in 2006:
- Almost 69% of SLPs served individuals with fluency problems.
- Almost 29% of SLPs served individuals with voice or resonance disorders.
- Approximately 61% of speech-language pathologists in schools indicated that they served individuals with SLI
- Almost 91% of SLPs in schools indicated that they servedindividuals with phonological/articulation disorder
- Estimates for language difficulty in preschool children range from 2% to 19%.
- Specific Language Impairment (SLI) is extremely common in children, and affects about 7% of the childhood population.
The first English-language IQ test, the Stanford–Binet Intelligence Scales, was adapted from a test battery designed for school placement by Alfred Binet in France. Lewis Terman adapted Binet's test and promoted it as a test measuring "general intelligence." Terman's test was the first widely used mental test to report scores in "intelligence quotient" form ("mental age" divided by chronological age, multiplied by 100). Current tests are scored in "deviation IQ" form, with a performance level by a test-taker two standard deviations below the median score for the test-taker's age group defined as IQ 70. Until the most recent revision of diagnostic standards, an IQ of 70 or below was a primary factor for intellectual disability diagnosis, and IQ scores were used to categorize degrees of intellectual disability.
Since current diagnosis of intellectual disability is not based on IQ scores alone, but must also take into consideration a person's adaptive functioning, the diagnosis is not made rigidly. It encompasses intellectual scores, adaptive functioning scores from an adaptive behavior rating scale based on descriptions of known abilities provided by someone familiar with the person, and also the observations of the assessment examiner who is able to find out directly from the person what he or she can understand, communicate, and such like. IQ assessment must be based on a current test. This enables diagnosis to avoid the pitfall of the Flynn effect, which is a consequence of changes in population IQ test performance changing IQ test norms over time.
In a typical 2-year-old child, about 50% of speech may be intelligible. A 4-year-old child's speech should be intelligible overall, and a 7-year-old should be able to clearly produce most words consistent with community norms for their age. Misarticulation of certain difficult sounds ("l", "r",
"s", "z", "th", "ch", "dzh", and "zh") may be normal up to 8 years. Children with speech sound disorder have pronunciation difficulties inappropriate for their age, and the difficulties are not caused by hearing problems, congenital deformities, motor disorders or selective mutism.
The DSM-5 diagnostic criteria are as follows:
- A. Persistent difficulty with speech sound production that interferes with speech intelligibility or prevents verbal communication of messages.
- B. The disturbance causes limitations in effective communication that interfere with social participation, academic achievement, or occupational performance, individually or in any combination.
- C. Onset of symptoms is in the early developmental period.
- D. The difficulties are not attributable to congenital or acquired conditions, such as cerebral palsy, cleft palate, deafness or hearing loss, traumatic brain injury, or other medical or neurological conditions.
For most children, the disorder is not lifelong and speech difficulties improve with time and speech-language treatment. Prognosis is poorer for children who also have a language disorder, as that may be indicative of a learning disorder.
After the initial diagnosis of speech delay, a hearing test will be administered to ensure that hearing loss or deafness is not an underlying cause of the delay. If a child has successfully completed the hearing test, the therapy or therapies used will be determined. There are many therapies available for children that have been diagnosed with a speech delay, and for every child, the treatment and therapies needed vary with the degree, severity, and cause of the delay. While speech therapy is the most common form of intervention, many children may benefit from additional help from occupational and physical therapies as well. Physical and occupational therapies can be used for a child that is suffering from speech delay due to physical malformations and children that have also been diagnosed with a developmental delay such as autism or a language processing delay. Children that have been identified with hearing loss can be taught simple sign language to build and improve their vocabulary in addition to attending speech therapy.
The parents of a delayed child are the first and most important tool in helping overcome the speech delay. The parent or caregiver of the child can provide the following activities at home, in addition to the techniques suggested by a speech therapist, to positively influence the growth of speech and vocabulary:
- Reading to the child regularly
- Use of questions and simple, clear language
- Positive reinforcement in addition to patience
For children that are suffering from physical disorder that is causing difficulty forming and pronouncing words, parents and caregivers suggest using and introducing different food textures to exercise and build jaw muscles while promoting new movements of the jaw while chewing. Another less studied technique used to combat and treat speech delay is a form of therapy using music to promote and facilitate speech and language development. It is important to understand that music therapy is in its infancy and has yet to be thoroughly studied and practiced on children suffering from speech delays and impediments.
"Aphasia is usually first recognized by the physician who treats the person for his or her brain injury. Most individuals will undergo a magnetic resonance imaging (MRI) or computed tomography (CT) scan to confirm the presence of a brain injury and to identify its precise location." In circumstances where a person is showing possible signs of aphasia, the physician will refer him or her to a speech-language pathologist (SLP) for a comprehensive speech and language evaluation. SLPs will examine the individual's ability to express him or herself through speech, understand language in written and spoken forms, write independently, and perform socially.
The American Speech, Language, Hearing Association (ASHA) states a comprehensive assessment should be conducted in order to analyze the patient's communication functioning on multiple levels; as well as the effect of possible communication deficits on activities of daily living. Typical components of an aphasia assessment include: case history, self report, oral-motor examination, language skills, identification of environmental and personal factors, and the assessment results. A comprehensive aphasia assessment includes both formal and informal measures.
Formal assessments:
- Boston Diagnostic Aphasia Examination (BDAE): diagnoses the presence and type of aphasia, focusing on location of lesion and the underlying linguistic processes.
- Western Aphasia Battery - Revised (WAB): determines the presence, severity, and type of aphasia; and can also determine baseline abilities of patient.
- Communication Activities of Daily Living - Second Edition (CADL-2): measures functional communication abilities; focuses on reading, writing, social interactions, and varying levels of communication.
- Revised Token Test (RTT): assess receptive language and auditory comprehension; focuses on patient's ability to follow directions.
Informal Assessments:
Informal assessments aide in the diagnosis of patients with suspected aphasia.
- Conversational Speech and Language Sample
- Family Interview
- Case History or Medical Chart Review
- Behavioral Observations
Diagnostic information should be scored and analyzed appropriately. Treatment plans and individual goals should be developed based on diagnostic information, as well as patient and caregiver needs, desires, and priorities.
Special education classes are the primary treatment. These classes focus on activities that sustain growth in language skills. The foundation of this treatment is repetition of oral, reading and writing activities. Usually the SLP, psychologist and the teacher work together with the children in small groups in the class room.
Another treatment is looking at a child's needs through the Individual Education Plan (IEP). In this program teachers and parents work together to monitor the progress of the child's comprehensive, verbal, written, social, and motor skills in school and in the home. Then the child goes through different assessments to determine his/her level. The level that the child is placed in will determine the class size, number of teachers, and the need for therapy.
What follows are a list of frequently used measures of speech and language skills, and the age-ranges for which they are appropriate.
- Clinical Evaluation of Language Fundamentals – Preschool (3–6 years)
- Clinical Evaluation of Language Fundamentals (6–21 years)
- MacArthur Communicative Development Inventories (0–12 months)
- The Rossetti Infant-Toddler Language Scale (0–36 months)
- Preschool Language Scale (0–6 years)
- Expressive One-word Picture Vocabulary Test (2–15 years)
- Bankson-Bernthal Phonological Process Survey Test (2–16 years)
- Goldman-Fristoe Test of Articulation 2 (2–21 years)
- Peabody Picture Vocabulary Test (2.5–40 years)
LBLD can be an enduring problem. Some people might experience overlapping learning disabilities that make improvement problematic. Others with single disabilities often show more improvement. Most subjects can achieve literacy via coping mechanisms and education.
Language delays are the most frequent developmental delays, and can occur for many reasons. A delay can be due to being a “late bloomer,” or a more serious problem. The most common causes of speech delay include
- Hearing loss
- Slow development
- Intellectual Disability
Such delays can occur in conjunction with a lack of mirroring of facial responses, unresponsiveness or unawareness of certain noises, a lack of interest in playing with other children or toys, or no pain response to stimuli.
Other causes include:
- Psychosocial deprivation - The child doesn't spend enough time talking with adults. Research on early brain development shows that babies and toddlers have a critical need for direct interactions with parents and other significant care givers for healthy brain growth and the development of appropriate social, emotional, and cognitive skills.
- Television viewing is associated with delayed language development. Children who watched television alone were 8.47 times more likely to have language delay when compared to children who interacted with their caregivers during television viewing. As recommended by the American Academy of Pediatrics (AAP), children under the age of 2 should watch no television at all, and after age 2 watch no more than one to two hours of quality programming a day. Therefore, exposing such young children to television programs should be discouraged. Parents should engage children in more conversational activities to avoid television-related delays to their children language development, which could impair their intellectual performance.
- Stress during pregnancy is associated with language delay.
- Being a twin
- Attention deficit hyperactivity disorder
- Autism (a developmental disorder) - There is strong evidence that autism is commonly associated with language delay. Asperger syndrome, which is on the autistic spectrum, however, is not associated with language delay.
- Selective mutism (the child just doesn't want to talk)
- Cerebral palsy (a movement disorder caused by brain damage)
- Genetic abnormalities - In 2005, researchers found a connection between expressive language delay and a genetic abnormality: a duplicate set of the same genes that are missing in sufferers of Williams-Beuren syndrome. Also so called XYY syndrome can often cause speech delay.
- Correlation with male sex, previous family history, and maternal education has been demonstrated.
According to the DSM-IV-TR, communication disorders are usually first diagnosed in childhood or adolescence though they are not limited as childhood disorders and may persist into adulthood. They may also occur with other disorders.
Diagnosis involves testing and evaluation during which it is determined if the scores/performance are "substantially below" developmental expectations and if they "significantly" interfere with academic achievement, social interactions and daily living. This assessment may also determine if the characteristic is deviant or delayed. Therefore, it may be possible for an individual to have communication challenges but not meet the criteria of being "substantially below" criteria of the DSM IV-TR.
It should also be noted that the DSM diagnoses do not comprise a complete list of all communication disorders, for example, auditory processing disorder is not classified under the DSM or ICD-10.
The following diagnoses are included in the communication disorders:
- Expressive language disorder – Characterized by difficulty expressing oneself beyond simple sentences and a limited vocabulary. An individual understands language better than their ability to use it; they may have a lot to say but have difficulties organizing and retrieving the words to get an idea across beyond what is expected for their developmental stage.
- Mixed receptive-expressive language disorder – problems comprehending the commands of others.
- Stuttering – a speech disorder characterized by a break in fluency, where sounds, syllables or words may be repeated or prolonged.
- Phonological disorder – a speech sound disorder characterized by problems in making patterns of sound errors, i.e. "dat" for "that".
- Communication disorder NOS (not otherwise specified) – the DSM-IV diagnosis in which disorders that do not meet the specific criteria for the disorder listed above may be classified.
TMoA is diagnosed by the referring physician and speech-language pathologist (SLP). The overall sign of TMoA is nonfluent, reduced, fragmentary echoic, and perseverative speech with frequent hesitations and pauses. Patients with TMoA also have difficulty initiating and maintaining speech. However, speech articulation and auditory comprehension remain typical. The hallmark sign of TMoA is intact repetition in the presence of these signs and symptoms.
TMoA, or any other type of aphasia, is identified and diagnosed through the screening and assessment process. Screening can be conducted by a SLP or other professional when there is a suspected aphasia. The screening does not diagnose aphasia, rather it points to the need for a further comprehensive assessment. A screening typically includes evaluation of oral motor functions, speech production skills, comprehension, use of written and verbal language, cognitive communication, swallowing, and hearing. Both the screening and assessment must be sensitive to the patient’s linguistic and cultural differences. An individual will be recommended to receive a comprehensive assessment if their screening shows signs of aphasia. Under the American Speech-Language-Hearing Association (ASHA) and World Health Organization (WHO) guidelines and the "International Classification of Functioning, Disability and Health" (ICF) framework, the comprehensive assessment encompasses not only speech and language, but also impairments in body structure and function, co-morbid deficits, limitations in activity and participation, and contextual (environmental and personal) factors. The assessment can be static (current functioning) or dynamic (ongoing) and the assessment tools can be standardized or nonstandardized. Typically, the assessment for aphasia includes a gathering of a case history, a self-report from the patient, an oral-motor examination, assessment of expressive and receptive language in spoken and written forms, and identification of facilitators and barriers to patient success. From this assessment, the SLP will determine type of aphasia and the patient's communicative strengths and weaknesses and how their diagnosis may impact their overall quality of life.
For nonverbal grade school children and adolescents with autism, communication systems and interventions have been implemented to enhance language and communication outcomes. Speech-generated devices, such as iPads, use visual displays for children who lack verbal language, giving them the task of selecting icons indicating a request or need. For adolescents with nonverbal autism, interventions can condition them to learn more advanced operations on speech-generated devices that require more steps (i.e. turning on device, scrolling through pages), which would allow them to enhance their communicative abilities independently.
The Picture Exchange System (PECS) is an alternative form of spontaneous communication for children with autism in which an individual selects a picture indicating a request. PECS can be utilized in educational settings and at the child’s home. Longitudinal studies suggest PECS can have long-term positive outcomes for school-aged children with nonverbal autism, specifically their social-communicative skills, such as higher frequencies of joint attention and initiation, and duration of cooperative play, which are all important roles in improving language outcomes.
It has also been suggested that a significant stage in acquiring verbal language is learning how to identify and reproduce syllables of words. One study found that nonverbal and minimally verbal children with autism are capable of enhancing their oral production and vocalizing written words by isolating each syllable of a word one at a time. The process of breaking down a syllable at a time and having it visually displayed and audibly available to the child can prompt him or her to imitate and create nonrandom and meaningful utterances.
Most of these studies contain small sample sizes and were pilot studies, making additional research significant to assess whether these findings can be generalized to all age groups of the same population. Furthermore, most studies on nonverbal autism speech-generated device communication were based on more basic skills, such as naming pictures and making requests for stimuli, while studies in advanced communication (i.e. asking "how are you?") is limited.
Errors produced by children with speech sound disorders are typically classified into four categories:
- Omissions: Certain sounds are not produced — entire syllables or classes of sounds may be deleted; e.g., fi' for fish or 'at for cat.
- Additions (or Epentheses/Commissions): an extra sound or sounds are added to the intended word; e.g. puh-lane for plane.
- Distortions: Sounds are changed slightly so that the intended sound may be recognized but sounds "wrong," or may not sound like any sound in the language.
- Substitutions: One or more sounds are substituted for another; e.g., wabbit for rabbit or tow for cow.
Sometimes, even for experts, telling exactly which type has been made is not obvious — some distorted forms of /r/ may be mistaken for /w/ by a casual observer, yet may not actually be either sound but somewhere in between. Further, children with severe speech sound disorders may be difficult to understand, making it hard to tell what word was actually intended and thus what is actually wrong with it. Some terms can be used to describe more than one of the above categories, such as lisp, which is often the replacement of /s/ with /th/ (a substitution), but can be a distortion, producing /s/ just behind the teeth resulting in a sound somewhere between /s/ and /th/.
There are three different levels of classification when determining the magnitude and type of an error that is produced:
1. Sounds the patient can produce
1. A: Phonemic- can be produced easily; used meaningfully and contrastively
2. B: Phonetic- produced only upon request; not used consistently, meaningfully, or contrastively; not used in connected speech
2. Stimulable sounds
1. A: Easily stimulable
2. B: Stimulable after demonstration and probing (i.e. with a tongue depressor)
3. Cannot produce the sound
1. A: Cannot be produced voluntarily
2. B: No production ever observed
Note that omissions do not mean the sound cannot be produced, and some sounds may be produced more easily or frequently when appearing with certain other sounds: someone might be able to say "s" and "t" separately, but not "st," or may be able to produce a sound at the beginning of a word but not at the end. The magnitude of the problem will often vary between different sounds from the same speaker.
Expressive aphasia is classified as non-fluent aphasia, as opposed to fluent aphasia. Diagnosis is done on a case by case basis, as lesions often affect the surrounding cortex and deficits are highly variable among patients with aphasia.
A physician is typically the first person to recognize aphasia in a patient who is being treated for damage to the brain. Routine processes for determining the presence and location of lesion in the brain include Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans. The physician will complete a brief assessment of the patient's ability to understand and produce language. For further diagnostic testing, the physician will refer the patient to a speech-language pathologist, who will complete a comprehensive evaluation.
In order to diagnose a patient who is suffering from Broca’s aphasia, there are certain commonly used tests and procedures. The Western Aphasia Battery (WAB) classifies individuals based on their scores on the subtests; spontaneous speech, auditory comprehension, repetition, and naming. The Boston Diagnostic Aphasia Examination (BDAE) can inform users what specific type of aphasia they may have, infer the location of lesion, and assess current language abilities. The Porch Index of Communication Ability (PICA) can predict potential recovery outcomes of the patients with aphasia. Quality of life measurement is also an important assessment tool. Tests such as the Assessment for Living with Aphasia (ALA) and the Satisfaction with Life Scale (SWLS) allow for therapists to target skills that are important and meaningful for the individual.
In addition to formal assessments, patient and family interviews are valid and important sources of information. The patient’s previous hobbies, interests, personality, and occupation are all factors that will not only impact therapy but may motivate them throughout the recovery process. Patient interviews and observations allow professionals to learn the priorities of the patient and family and determine what the patient hopes to regain in therapy. Observations of the patient may also be beneficial to determine where to begin treatment. The current behaviors and interactions of the patient will provide the therapist with more insight about the client and his or her individual needs. Other information about the patient can be retrieved from medical records, patient referrals from physicians, and the nursing staff.
In non-speaking patients who use manual languages, diagnosis is often based on interviews from the patient's acquaintances, noting the differences in sign production pre- and post- damage to the brain. Many of these patients will also begin to rely on non-linguistic gestures to communicate, rather than signing since their language production is hindered.
Children who demonstrate deficiencies early in their speech and language development are at risk for continued speech and language issues throughout later childhood. Similarly, even if these speech and language problems have been resolved, children with early language delay are more at risk for difficulties in phonological awareness, reading, and writing throughout their lives. Children with mixed receptive-expressive language disorder are often likely to have long-term implications for language development, literacy, behavior, social development, and even mental health problems. If suspected of having a mixed receptive-expressive language disorder, treatment is available from a speech therapist or pathologist. Most treatments are short term, and rely upon accommodations made within the environment, in order to minimize interfering with work or school. Programs that involve intervention planning that link verbal short term memory with visual/non-verbal information may be helpful for these children. In addition, approaches such as parent training for language stimulation and monitoring language through the "watch and see" method are recommended. The watch-and-see technique advises children with mixed receptive-expressive language disorder who come from stable, middle-class homes without any other behavioral, medical, or hearing problems should be vigilantly monitored rather than receive intervention. It is often the case that children do not meet the eligibility criteria established through a comprehensive oral language evaluation; and as a result, are not best suited for early intervention programs and require a different approach besides the "one size fits all" model.
Expressive language disorder is a communication disorder in which there are difficulties with verbal and written expression. It is a specific language impairment characterized by an ability to use expressive spoken language that is markedly below the appropriate level for the mental age, but with a language comprehension that is within normal limits. There can be problems with vocabulary, producing complex sentences, and remembering words, and there may or may not be abnormalities in articulation.
As well as present speech production, very often, someone will have difficulty remembering things. This memory problem is only disturbing for speech; non-verbal or non-linguistically based memory will be unimpaired. An example of a child with expressive language disorder can be seen here.
Expressive language disorder affects work and schooling in many ways. It is usually treated by specific speech therapy, and usually cannot be expected to go away on its own.
Expressive language disorder can be further classified into two groups: developmental expressive language disorder and acquired expressive language disorder. Developmental expressive language disorder currently has no known cause, is first observed when a child is learning to talk, is more common in boys than girls, and is much more common than the acquired form of the disorder. Acquired expressive language disorder is caused by specific damage to the brain by a stroke, traumatic brain injury, or seizures.
Care must be taken to distinguish expressive language disorder from other communication disorders, sensory-motor disturbances, intellectual disability and/or environmental deprivation (see DSM-IV-TR criterion D). These factors affect a person's speech and writing to certain predictable extents, and with certain differences.
Careful diagnosis is also important because "atypical language development can be a secondary characteristic of other physical and developmental problems that may first manifest as language problems".