Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The treatment for vestibular neuronitis depends on the cause. However, symptoms of vertigo can be treated in the same way as other vestibular dysfunctions with vestibular rehabilitation.
Typical treatments include combinations of head and eye movements, postural changes, and walking exercises. Specifically, exercises that may be prescribed include keeping eyes fixated on a specific target while moving the head, moving the head right to left at two targets at a significant distance apart, walking while keeping eyes fixated on a specific target, and walking while keeping eyes fixated on a specific target while also turning the head in different directions.
The main function behind repeating a combination of head and eye movements, postural changes and walking is that through this repetition, compensatory changes for the dysfunctions arising from peripheral vestibular structures may be promoted in the central vestibular system (brainstem and cerebellum).
Vestibular rehabilitation therapy is a highly effective way to substantially reduce or eliminate residual dizziness from labyrinthitis. VRT works by causing the brain to use already existing neural mechanisms for adaptation, neuroplasticity, and compensation.
Rehabilitation strategies most commonly used are:
- Gaze stability exercises – moving the head from side to side while fixated on a stationary object (aimed at assisting the eye to fixate during head rotation without the input from the lost canal vestibulo–ocular reflex) An advanced progression of this exercise would be walking in a straight line while looking side to side by turning the head.
- Habituation exercises – movements designed to provoke symptoms and subsequently reduce the negative vestibular response upon repetition. Examples of these include Brandt–Daroff exercises.
- Functional retraining – including postural control, relaxation, and balance training.
These exercises function by challenging the vestibular system. Progression occurs by increasing the amplitude of the head or focal point movements, increasing the speed of movement, and combining movements such as walking and head turning.
One study found that patients who believed their illness was out of their control showed the slowest progression to full recovery, long after the initial vestibular injury had healed. The study revealed that the patient who compensated well was one who, at the psychological level, was not afraid of the symptoms and had some positive control over them. Notably, a reduction in negative beliefs over time was greater in those patients treated with rehabilitation than in those untreated. "Of utmost importance, baseline beliefs were the only significant predictor of change in handicap at 6 months followup."
Tests for vertigo often attempt to elicit nystagmus and to differentiate vertigo from other causes of dizziness such as presyncope, hyperventilation syndrome, disequilibrium, or psychiatric causes of lightheadedness. Tests of vestibular system (balance) function include: electronystagmography (ENG), Dix-Hallpike maneuver, rotation tests, head-thrust test, caloric reflex test, and computerized dynamic posturography (CDP).
The HINTS test, which is a combination of three physical exam tests that may be performed by physicians at the bedside has been deemed helpful in differentiating between central and peripheral causes of vertigo. The HINTS test involves: the horizontal head impulse test, observation of nystagmus on primary gaze, and the test of skew. CT scans or MRIs are sometimes used by physicians when diagnosing vertigo.
Tests of auditory system (hearing) function include pure tone audiometry, speech audiometry, acoustic reflex, electrocochleography (ECoG), otoacoustic emissions (OAE), and the auditory brainstem response test.
A number of specific conditions can cause vertigo. In the elderly, however, the condition is often multifactorial.
A recent history of underwater diving can indicate possibility of barotrauma or decompression sickness involvement, but does not exclude all other possibilities. The dive profile (which is frequently recorded by dive computer) can be useful to assess a probability for decompression sickness, which can be confirmed by therapeutic recompression.
Definitive treatment depends on the underlying cause of vertigo. Ménière's disease patients have a variety of treatment options to consider when receiving treatment for vertigo and tinnitus including: a low-salt diet and intratympanic injections of the antibiotic gentamicin or surgical measures such as a shunt or ablation of the labyrinth in refractory cases.
Common drug treatment options for vertigo may include the following:
- Anticholinergics such as hyoscine hydrobromide (scopolamine)
- Anticonvulsants such as topiramate or valproic acid for vestibular migraines
- Antihistamines such as betahistine, dimenhydrinate, or meclizine, which may have antiemetic properties
- Beta blockers such as metoprolol for vestibular migraine
- Corticosteroids such as methylprednisolone for inflammatory conditions such as vestibular neuritis or dexamethasone as a second-line agent for Ménière's disease
All cases of decompression sickness should be treated initially with 100% oxygen until hyperbaric oxygen therapy (100% oxygen delivered in a high-pressure chamber) can be provided. Several treatments may be necessary, and treatment will generally be repeated until either all symptoms resolve, or no further improvement is apparent.
The condition is diagnosed by the patient's history, and by performing the Dix–Hallpike test or the roll test, or both.
The Dix–Hallpike test is a common test performed by examiners to determine whether the posterior semicircular canal is involved. It involves a reorientation of the head to align the posterior semicircular canal (at its entrance to the ampulla) with the direction of gravity. This test will reproduce vertigo and nystagmus characteristic of posterior canal BPPV.
When performing the Dix–Hallpike test, patients are lowered quickly to a supine position, with the neck extended by the clinician performing the maneuver. For some patients, this maneuver may not be indicated, and a modification may be needed that also targets the posterior semicircular canal. Such patients include those who are too anxious about eliciting the uncomfortable symptoms of vertigo, and those who may not have the range of motion necessary to comfortably be in a supine position. The modification involves the patient moving from a seated position to side-lying "without" their head extending off the examination table, such as with Dix–Hallpike. The head is rotated 45 degrees away from the side being tested, and the eyes are examined for nystagmus. A positive test is indicated by patient report of a reproduction of vertigo and clinician observation of nystagmus. Both the Dix–Hallpike and the side-lying testing position have yielded similar results, and as such the side-lying position can be used if the Dix–Hallpike cannot be performed easily.
The roll test can determine whether the horizontal semicircular canal is involved. The roll test requires the patient to be in a supine position with their head in 30° of cervical flexion. Then the examiner quickly rotates the head 90° to the left side, and checks for vertigo and nystagmus. This is followed by gently bringing the head back to the starting position. The examiner then quickly rotates the head 90° to the right side, and checks again for vertigo and nystagmus. In this roll test, the patient may experience vertigo and nystagmus on both sides, but rotating towards the affected side will trigger a more intense vertigo. Similarly, when the head is rotated towards the affected side, the nystagmus will beat towards the ground and be more intense.
As mentioned above, both the Dix–Hallpike and roll test provoke the signs and symptoms in subjects suffering from archetypal BPPV. The signs and symptoms patients with BPPV experience are typically a short-lived vertigo, and observed nystagmus. In some patients, though rarely, the vertigo can persist for years. Assessment of BPPV is best done by a medical health professional skilled in management of dizziness disorders, commonly a physiotherapist, audiologist or other physician.
The nystagmus associated with BPPV has several important characteristics which differentiate it from other types of nystagmus.
- Latency of onset: there is a 5–10 second delay prior to onset of nystagmus.
- Nystagmus lasts for 5–120 seconds.
- Positional: the nystagmus occurs only in certain positions.
- Repeated stimulation, including via Dix–Hallpike maneuvers, cause the nystagmus to fatigue or disappear temporarily.
- Rotatory/Torsional component is present, or (in the case of lateral canal involvement) the nystagmus beats in either a geotropic (towards the ground) or ageotropic (away from the ground) fashion.
- Visual fixation suppresses nystagmus due to BPPV.
Although rare, CNS disorders can sometimes present as BPPV. A practitioner should be aware that if a patient whose symptoms are consistent with BPPV, but does not show improvement or resolution after undergoing different particle repositioning maneuvers — detailed in the Treatment section below — need to have a detailed neurological assessment and imaging performed to help identify the pathological condition.
Vertigo, a distinct process sometimes confused with the broader term, dizziness, accounts for about six million clinic visits in the United States every year; between 17 and 42% of these patients are eventually diagnosed with BPPV.
Other causes of vertigo include:
- Motion sickness/motion intolerance: a disjunction between visual stimulation, vestibular stimulation, and/or proprioception
- Visual exposure to nearby moving objects (examples of optokinetic stimuli include passing cars and falling snow)
- Other diseases: (labyrinthitis, Ménière's disease, and migraine, etc.)
Tests of vestibular system (balance) function include electronystagmography (ENG), Videonystagmograph (VNG), rotation tests, Computerized Dynamic Posturography (CDP), and Caloric reflex test.
Tests of auditory system (hearing) function include pure-tone audiometry, speech audiometry, acoustic-reflex, electrocochleography (ECoG), otoacoustic emissions (OAE), and auditory brainstem response test (ABR; also known as BER, BSER, or BAER).
Other diagnostic tests include magnetic resonance imaging (MRI) and computerized axial tomography (CAT, or CT).
The difficulty of making the right vestibular diagnosis is reflected in the fact that in some populations, more than one third of the patients with a vestibular disease consult more than one physician – in some cases up to more than fifteen.
Diagnosis of a balance disorder is complicated because there are many kinds of balance disorders and because other medical conditions—including ear infections, blood pressure changes, and some vision problems—and some medications may contribute to a balance disorder. A person experiencing dizziness should see a physiotherapist or physician for an evaluation. A physician can assess for a medical disorder, such as a stroke or infection, if indicated. A physiotherapist can assess balance or a dizziness disorder and provide specific treatment.
The primary physician may request the opinion of an otolaryngologist to help evaluate a balance problem. An otolaryngologist is a physician/surgeon who specializes in diseases and disorders of the ear, nose, throat, head, and neck, sometimes with expertise in balance disorders. He or she will usually obtain a detailed medical history and perform a physical examination to start to sort out possible causes of the balance disorder. The physician may require tests and make additional referrals to assess the cause and extent of the disruption of balance. The kinds of tests needed will vary based on the patient's symptoms and health status. Because there are so many variables, not all patients will require every test.
The diagnosis of mastoiditis is clinical—based on the medical history and physical examination. Imaging studies provide additional information; The standard method of diagnosis is via MRI scan although a CT scan is a common alternative as it gives a clearer and more useful image to see how close the damage may have gotten to the brain and facial nerves. Planar (2-D) X-rays are not as useful. If there is drainage, it is often sent for culture, although this will often be negative if the patient has begun taking antibiotics. Exploratory surgery is often used as a last resort method of diagnosis to see the mastoid and surrounding areas.
Otitis is a general term for inflammation or infection of the ear, in both humans and other animals.
It is subdivided into the following:
- "Otitis externa", external otitis, or "swimmer's ear" involves the outer ear and ear canal. In external otitis, the ear hurts when touched or pulled.
- "Otitis media" or middle ear infection involves the middle ear. In otitis media, the ear is infected or clogged with fluid behind the ear drum, in the normally air-filled middle-ear space. This very common childhood infection sometimes requires a surgical procedure called "myringotomy" and tube insertion.
- "Otitis interna" or labyrinthitis involves the inner ear. The inner ear includes sensory organs for balance and hearing. When the inner ear is inflamed, "vertigo" is a common symptom.
With prompt treatment, it is possible to cure mastoiditis. Seeking medical care early is important. However, it is difficult for antibiotics to penetrate to the interior of the mastoid process and so it may not be easy to cure the infection; it also may recur. Mastoiditis has many possible complications, all connected to the infection spreading to surrounding structures. Hearing loss is likely, or inflammation of the labyrinth of the inner ear (labyrinthitis) may occur, producing vertigo and an ear ringing may develop along with the hearing loss, making it more difficult to communicate. The infection may also spread to the facial nerve (cranial nerve VII), causing facial-nerve palsy, producing weakness or paralysis of some muscles of facial expression, on the same side of the face. Other complications include Bezold's abscess, an abscess (a collection of pus surrounded by inflamed tissue) behind the sternocleidomastoid muscle in the neck, or a subperiosteal abscess, between the periosteum and mastoid bone (resulting in the typical appearance of a protruding ear). Serious complications result if the infection spreads to the brain. These include meningitis (inflammation of the protective membranes surrounding the brain), epidural abscess (abscess between the skull and outer membrane of the brain), dural venous thrombophlebitis (inflammation of the venous structures of the brain), or brain abscess.
About 20–30% of the population report to have experienced dizziness at some point in the previous year.
School-age children with unilateral hearing loss tend to have poorer grades and require educational assistance. This is not the case with everyone, however. They can also be perceived to have behavioral issues.
People afflicted with UHL have great difficulty locating the source of any sound. They may be unable to locate an alarm or a ringing telephone. The swimming game Marco Polo is generally impossible for them.
When wearing stereo headphones, people with unilateral hearing loss can hear only one channel, hence the panning information (volume and time differences between channels) is lost; some instruments may be heard better than others if they are mixed predominantly to one channel, and in extreme cases of sound production, such as complete stereo separation or stereo-switching, only part of the composition can be heard; in games using 3D audio effects, sound may not be perceived appropriately due to coming to the disabled ear. This can be corrected by using settings in the software or hardware—audio player, OS, amplifier or sound source—to adjust balance to one channel (only if the setting downmixes sound from both channels to one), or there may be an option to outright downmix both channels to mono. Such settings may be available via the device or software's accessibility features. As hardware solutions, stereo-to-mono adapters may be available to receive mono sound in stereo headphones from a stereo sound source, or some monaural headsets for cellphones and VOIP communication may combine stereo sound to mono (though headphones for voice communication typically offer lower audio quality than headphones targeted for listening to music). From the standpoint of sound fidelity, sound information in downmixed mono channel will, in any case, differ from that in either of the source channels or what is perceived by a normal-hearing person, thus technically some audio quality is lost (for example, the same or slightly different sound occurrences in two channels, with time delay between them, will be merged to a sound in the mono channel that unavoidably cannot correspond to the intent of the sound producer); however, such loss is most probably unnoticeable, especially compared to other distortions inherent in sound reproduction, and to the person's problems from hearing loss.
Learning of the central nervous system by "plasticity" or biological maturation over time does not improve the performance of monaural listening. In addition to conventional methods for improving the performance of the impaired ear, there are also hearing aids adapted to unilateral hearing loss which are of very limited effectiveness due to the fact that they don't restore the stereo hearing ability.
- Contralateral Routing of Signals (CROS) hearing aids are hearing aids that take sound from the ear with poorer hearing and transmit to the ear with better hearing. There are several types of CROS hearing aid:
- conventional CROS comprises a microphone placed near the impaired ear and an amplifier (hearing aid) near the normal ear. The two units are connected either by a wire behind the neck or by wireless transmission. The aid appears as two behind-the-ear hearing aids and is sometimes incorporated into eyeglasses.
- CIC transcranial CROS comprises a bone conduction hearing aid completely in the ear canal (CIC). A high-power conventional air conduction hearing aid fits deeply into the patient’s deaf ear. Vibration of the bony walls of the ear canal and middle ear stimulates the normal ear by means of bone conduction through the skull.
- BAHA transcranial CROS Bone Anchored Hearing Aid (BAHA): a surgically implanted abutment transmits sound from the deaf ear by direct bone conduction and stimulates the cochlea of the normal hearing ear.
- SoundBite Intraoral bone conduction which uses bone conduction via the teeth. One component resembles a conventional behind-the-ear hearing aid that wirelessly connects to a second component worn in the mouth that resembles a conventional dental appliance.
In Germany and Canada, cochlear implants have been used with great success to mostly restore the stereo hearing ability, minimizing the impacts of the SSD and the quality of life of the patient.
Many conditions are associated with dizziness. Dizziness can accompany certain serious events, such as a concussion or brain bleed, epilepsy and seizures (convulsions), strokes, and cases of meningitis and encephalitis. However, the most common subcategories can be broken down as follows: 40% peripheral vestibular dysfunction, 10% central nervous system lesion, 15% psychiatric disorder, 25% presyncope/disequilibrium, and 10% nonspecific dizziness. Some vestibular pathologies have symptoms that are comorbid with mental disorders. The medical conditions that often have dizziness as a symptom include:
- Benign paroxysmal positional vertigo
- Meniere's disease
- Vestibular neuronitis
- Labyrinthitis
- Otitis media
- Brain tumor
- Acoustic neuroma
- Motion sickness
- Ramsay Hunt syndrome
- Migraine
- Multiple sclerosis
- Pregnancy
- low blood pressure (hypotension)
- low blood oxygen content (hypoxemia)
- heart attack
- iron deficiency (anemia)
- low blood sugar (hypoglycemia)
- hormonal changes (e.g. thyroid disease, menstruation, pregnancy)
- panic disorder
- hyperventilation
- anxiety
- depression
- age-diminished visual, balance, and perception of spatial orientation abilities
No known treatment for BPT currently exists. However, the condition it is self-limiting and resolves after about eighteen months.
Diagnosis is based on clinical findings.
'Clinical findings'
- Profound congenital sensorineural deafness is present
- CT scan or MRI of the inner ear shows no recognizable structure in the inner ear.
- As michel's aplasia is associated with LAMM syndrome there will be Microtia and microdontia present(small sized teeth).
Molecular genetic Testing
1. "FGF3" is the only gene, whose mutation can cause congenital deafness with Michel's aplasia, microdontia and microtia
Carrier testing for at-risk relatives requires identification of mutations which are responsible for occurrence of disease in the family.
Benign paroxysmal torticollis disappears in the early years of life with no medical intervention.
However, some cases of benign paroxysmal torticollis cases can evolve into benign paroxysmal vertigo of childhood, migrainous vertigo or typical migraines.
Since the majority of ACA cases result from a post-viral infection, the physician’s first question will be to ask if the patient has been recently ill. From this point a series of exclusion tests can determine if the current state of ataxia is a correct diagnosis or not. A CT (computed tomography) scan with normal results can rule out the possibility of the presence of a posterior fossa tumor and an acute hemorrhage, which would both have abnormal results. Other imaging tests like EEG (electroencephalographs) and MRI (magnetic resonance imaging) can also be performed to eliminate possible diagnoses of other severe diseases, such as neuroblastoma, drug intoxication, acute labyrinthitis, and metabolic diseases. A more complicated test that is performed for research analysis of the disease is to isolate viruses from the CSF (cerebrospinal fluid). This can show that the virus has attacked the nervous system of the patient and resulted in the ataxia symptoms.
Ataxia usually goes away without any treatment. In cases where an underlying cause is identified, your doctor will treat the underlying cause. In extremely rare cases, you may have continuing and disabling symptoms. Treatment includes corticosteroids, Intravenous immunoglobulin, or plasma exchange therapy. Drug treatment to improve muscle coordination has a low success rate. However, the following drugs may be prescribed: clonazepam, amantadine, gabapentin, or buspirone. Occupational or physical therapy may also alleviate lack of coordination. Changes to diet and nutritional supplements may also help. Treatment will depend on the cause. If the acute cerebellar ataxia is due to bleeding, surgery may be needed. For a stroke, medication to thin the blood can be given. Infections may need to be treated with antibiotics. Steroids may be needed for swelling (inflammation) of the cerebellum (such as from multiple sclerosis). Cerebellar ataxia caused by a recent viral infection may not need treatment.
Presence of inner ear abnormalities lead to Delayed gross development of child because of balance impairment and profound deafness which increases the risk of trauma and accidents.
- Incidence of accidents can be decreased by using visual or vibrotactile alarm systems in homes as well as in schools.
- Anticipatory education of parents, health providers and educational programs about hazards can help.
The evaluation for VBI starts with a history and physical exam, with great emphasis on the cardiovascular and neurologic exam. It also includes a work-up to exclude benign conditions (such as labyrinthitis, vestibular neuronitis, and benign paroxysmal positional vertigo) that have overlapping signs and symptoms. However, the exact work-up largely depends on the patient’s age and known risk factors. For middle-aged patients, a cardiovascular risk factor evaluation is important. This often includes a cholesterol level, lipid profile (see this to determine what your cholesterol level means), ECG, and echocardiogram. If a person with VBI is under age 45 and has no evidence for atherosclerosis, a work-up for hypercoagulable states (Lupus anticoagulant, anti-cardiolipin antibodies, is indicated. Screening for protein C, protein S, or antithrombin III deficiency is sometimes recommended but these are more usually responsible for venous thrombosis than arterial problems.
Imaging studies are rarely required to diagnose VBI, but sometimes computed tomography (CT) is performed first. The CT is extremely sensitive in detecting hemorrhage. However, magnetic resonance imaging (MRI) is superior to the CT in detecting ischemic changes in the vertebrobasilar distribution. Magnetic resonance angiography (MRA) also can be used to identify vertebrobasilar stenoses or occlusions, but it can often overestimate the degree of stenosis, or wrongly show stenosis as an occlusion. Intracranial MRA is mostly sufficient to evaluate vertebrobasilar arteries, while extracranial vertebral arteries are better diagnosed using contrast-enhanced MRA, which is less dependent on flow phenomena and more accurate in evaluating stenosis.
CT angiography is also highly accurate in evaluation vertebrobasilar vessels, but ionizing radiation and use of nephrotoxic contrast media make it less suitable both in elderly with renal insufficiency and young adults because of radiation exposure. Moreover, vessel wall calcification and beam-hardening artifacts due to dense bones or metal fillings sometimes cause strong CT-image degradation.
Derealization (sometimes abbreviated as DR) is an alteration in the perception or experience of the external world so that it seems unreal. Other symptoms include feeling as though one's environment is lacking in spontaneity, emotional colouring, and depth. It is a dissociative symptom of many conditions.
Derealization is a subjective experience of unreality of the outside world, while depersonalization is sense of unreality in one's personal self, although most authors currently do not regard derealization (surroundings) and depersonalization (self) as separate constructs.
Chronic derealization may be caused by occipital–temporal dysfunction. These symptoms are common in the population, with a lifetime prevalence of up to 5% and 31–66% at the time of a traumatic event.
Patients should discuss with their physician possible causes for their VBI symptoms. As discussed above, postural changes, exercise, and dehydration are some of the likely culprits. Treatment usually involves lifestyle modifications. For example, if VBI is attributed mainly to postural changes, patients are advised to slowly rise to standing position after sitting for a long period of time. An appropriate exercise regimen for each patient can also be designed in order to avoid the excessive pooling of blood in the legs. Dehydrated patients are often advised to increase their water intake, especially in hot, dry climates. Finally, when applicable, patients are often advised to stop smoking and to control their hypertension, diabetes, and cholesterol level.
In the event that a patient suffers a “drop attack,” and especially for the elderly population, the most important action is to be evaluated for associated head or other injuries. To prevent drop attacks, patients are advised to “go to the ground” before the knees buckle and shortly after feeling dizzy or experiencing changes in vision. Patients should not be concerned about the social consequences of suddenly sitting on the floor, whether in the mall or sidewalk, as such actions are important in preventing serious injuries.
Sometimes, to prevent further occlusion of blood vessels, patients are started on an antiplatelet agent (aspirin, clopidogrel, or aspirin/dipyridamole) or sometimes an anticoagulant (warfarin) once hemorrhage has been excluded with imaging.
For treatment of vertebrobasilar stenosis due to atherosclerosis, researchers from Stanford University found that intracranial angioplasty can be performed with an annual stroke rate in the territory of treatment of 3.2% and 4.4% for all strokes, including periprocedural events. Randomized control trials need to be performed.
The detachment of derealization can be described as an immaterial substance that separates a person from the outside world, such as a sensory fog, pane of glass, or veil. Individuals may report that what they see lacks vividness and emotional coloring. Emotional response to visual recognition of loved ones may be significantly reduced. Feelings of "déjà vu" or "jamais vu" are common. Familiar places may look alien, bizarre, and surreal. One may not even be sure whether what he or she perceives is in fact reality or not. The world as perceived by the individual may feel like it is going through a dolly zoom effect. Such perceptual abnormalities may also extend to the senses of hearing, taste, and smell. The degree of familiarity one has with their surroundings is among one's sensory and psychological identity, memory foundation and history when experiencing a place. When a person is in a state of derealization, they block this identifying foundation from recall. This "blocking effect" creates a discrepancy of correlation between one's perception of one's surroundings during a derealization episode, and what that same individual would perceive in the absence of a derealization episode.
Frequently, derealization occurs in the context of constant worrying or "intrusive thoughts" that one finds hard to switch off. In such cases it can build unnoticed along with the underlying anxiety attached to these disturbing thoughts, and be recognized only in the aftermath of a realization of crisis, often a panic attack, subsequently seeming difficult or impossible to ignore. This type of anxiety can be crippling to the affected and may lead to avoidant behavior. Those who experience this phenomenon may feel concern over the cause of their derealization. It is often difficult to accept that such a disturbing symptom is simply a result of anxiety, and the individual may often think that the cause must be something more serious. This can, in turn, cause more anxiety and worsen the derealization.
Derealization also affects the learning process. Because the individual almost sees the events as if in third person, they cannot properly process information.
People experiencing derealization describe feeling as if they are viewing the world through a TV screen. This, and other similar feelings attendant to derealization, can cause a sensation of alienation and distance between the person suffering from derealization and others around them.
Partial symptoms would also include the feeling of being an "observer"/an "observer effect" on the planet, with everything happening or being experienced through their own eyes (similar to a first person camera in a game).