Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
There are no methods for preventing the manifestation of the pathology of MSUD in infants with two defective copies of the BCKD gene. However, genetic counselors may consult with couples to screen for the disease via DNA testing. DNA testing is also available to identify the disease in an unborn child in the womb.
Screening for elevated galactose levels may detect GALE deficiency or dysfunction in infants, and mutation studies for GALE are clinically available.
On 9 May 2014, the UK National Screening Committee (UK NSC) announced its recommendation to screen every newborn baby in the UK for four further genetic disorders as part of its NHS Newborn Blood Spot Screening programme, including maple syrup urine disease.
Newborn screening for maple syrup urine disease involves analyzing the blood of 1–2 day-old newborns through tandem mass spectrometry. The blood concentration of leucine and isoleucine is measured relative to other amino acids to determine if the newborn has a high level of branched-chain amino acids. Once the newborn is 2–3 days old the blood concentration of branched-chain amino acids like leucine is greater than 1000 µmol/L and alternative screening methods are used. Instead, the newborn’s urine is analyzed for levels of branched-chain alpha-hydroxyacids and alpha-ketoacids.
Diagnosis of canine phosphofructokinase deficiency is similar to the blood tests used in diagnosis of humans. Blood tests measuring the total erythrocyte PFK activity are used for definitive diagnosis in most cases. DNA testing for presence of the condition is also available.
Treatment mostly takes the form of supportive care. Owners are advised to keep their dogs out of stressful or exciting situations, avoid high temperature environments and strenuous exercise. It is also important for the owner to be alert for any signs of a hemolytic episode. Dogs carrying the mutated form of the gene should be removed from the breeding population, in order to reduce incidence of the condition.
Treatment or management of organic acidemias vary; eg see methylmalonic acidemia, propionic acidemia, isovaleric acidemia, and maple syrup urine disease.
As of 1984 there were no effective treatments for all of the conditions, though treatment for some included a limited protein/high carbohydrate diet, intravenous fluids, amino acid substitution, vitamin supplementation, carnitine, induced anabolism, and in some cases, tube-feeding.
As of 1993 ketothiolase deficiency and other OAs were managed by trying to restore biochemical and physiologic homeostasis; common therapies included restricting diet to avoid the precursor amino acids and use of compounds to either dispose of toxic metabolites or increase enzyme activity.
A diagnosis can be made through a muscle biopsy that shows excess glycogen accumulation. Glycogen deposits in the muscle are a result of the interruption of normal glucose breakdown that regulates the breakdown of glycogen. Blood tests are conducted to measure the activity of phosphofructokinase, which would be lower in a patient with this condition. Patients also commonly display elevated levels of creatine kinase.
Treatment usually entails that the patient refrain from strenuous exercise to prevent muscle pain and cramping. Avoiding carbohydrates is also recommended.
A ketogenic diet also improved the symptoms of an infant with PFK deficiency. The logic behind this treatment is that the low-carb high fat diet forces the body to use fatty acids as a primary energy source instead of glucose. This bypasses the enzymatic defect in glycolysis, lessening the impact of the mutated PFKM enzymes. This has not been widely studied enough to prove if it is a viable treatment, but testing is continuing to explore this option.
Genetic testing to determine whether or not a person is a carrier of the mutated gene is also available.
Organic acidemias are usually diagnosed in infancy, characterized by urinary excretion of abnormal amounts or types of organic acids. The diagnosis is usually made by detecting an abnormal pattern of organic acids in a urine sample by gas chromatography-mass spectrometry. In some conditions, the urine is always abnormal, in others the characteristic substances are only present intermittently. Many of the organic acidemias are detectable by newborn screening with tandem mass spectrometry.
These disorders vary in their prognosis, from manageable to fatal, and usually affect more than one organ system, especially the central nervous system.
Neurological damage and developmental delay are common factors in diagnosis, with associated symptoms ranging from poor feeding to slow growth, lethargy, vomiting,
dehydration, malnutrition, hypoglycemia, hypotonia, metabolic acidosis, ketoacidosis, hyperammonemia, and if left untreated, death.
Definitive diagnosis requires LCAT gene analysis for mutation and functional activity. However, numerous lab tests may help with making a diagnosis such as complete blood count (CBC), urinalysis, blood chemistries, lipid panels, and plasma LCAT activity.
Fish-eye disease is characterized by abnormalities like visual impairment, plaques of fatty material, and dense opacification.
Succinyl-CoA:3-oxoacid CoA transferase deficiency (SCOT deficiency) is an inborn error of ketone body utilization. Succinyl-CoA:3-oxoacid CoA transferase catalyzes the transfer of coenzyme A from succinyl-coenzyme A to acetoacetate. It can be caused by mutation in the "OXCT1" gene.
First described in 1972, more than 30 people have been reported in the medical literature with this inborn error of metabolism. They experience attacks of ketoacidosis during illness, and even when unwell may have elevated levels of ketone bodies in blood and urine (ketonemia and ketonuria, respectively). Not all people with SCOT deficiency have persistent ketonemia and ketonuria, particularly those with milder defects of enzyme activity.
Copper deficiency is a very rare disease and is often misdiagnosed several times by physicians before concluding the deficiency of copper through differential diagnosis (copper serum test and bone marrow biopsy are usually conclusive in diagnosing copper deficiency). On average, patients are diagnosed with copper deficiency around 1.1 years after their first symptoms are reported to a physician.
Copper deficiency can be treated with either oral copper supplementation or intravenous copper. If zinc intoxication is present, discontinuation of zinc may be sufficient to restore copper levels back to normal, but this usually is a very slow process. People who suffer from zinc intoxication will usually have to take copper supplements in addition to ceasing zinc consumption. Hematological manifestations are often quickly restored back to normal. The progression of the neurological symptoms will be stopped by appropriate treatment, but often with residual neurological disability.
The characteristic hematological (blood) effects of copper deficiency are anemia (which may be microcytic, normocytic or macrocytic) and neutropenia. Thrombocytopenia (low blood platelets) is unusual.
The peripheral blood and bone marrow aspirate findings in copper deficiency can mimic myelodysplastic syndrome. Bone marrow aspirate in both conditions may show dysplasia of blood cell precursors and the presence of ring sideroblasts (erythroblasts containing multiple iron granules around the nucleus). Unlike most cases of myelodysplastic syndrome, the bone marrow aspirate in copper deficiency characteristically shows cytoplasmic vacuoles within red and white cell precursors, and karyotyping in cases of copper deficiency does not reveal cytogenetic features characteristic of myelodysplastic syndrome.
Anemia and neutropenia typically resolve within six weeks of copper replacement.
The treatment is some form of Vitamin E supplementation.
Aggressive vitamin E replacement therapy has been shown to either prevent, halt or improve visual abnormalities.
Renal failure is the major cause of morbidity and mortality in complete LCAT deficiency, while in partial deficiency (fish eye disease) major cause of morbidity is visual impairment due to corneal opacity. These patients have low HDL cholesterol but surprisingly premature atherosclerosis is not seen. However, there are some reported cases.
Beta-ketothiolase deficiency is a rare, autosomal recessive metabolic disorder in which the body cannot properly process the amino acid isoleucine or the products of lipid breakdown.
The typical age of onset for this disorder is between 6 months and 24 months.
The concentration of ketone bodies may vary depending on diet, exercise, degree of metabolic adaptation and genetic factors. Ketosis can be induced when a ketogenic diet is followed for more than 3 days. This induced ketosis is sometimes called nutritional ketosis. This table shows the concentrations typically seen under different conditions
Note that urine measurements may not reflect blood concentrations. Urine concentrations are lower with greater hydration, and after adaptation to a ketogenic diet the amount lost in the urine may drop while the metabolism remains ketotic. Most urine strips only measure acetoacetate, while when ketosis is more severe the predominant ketone body is β-hydroxybutyrate. Unlike glucose, ketones are excreted into urine at any blood level. Ketoacidosis is a metabolic derangement that cannot occur in a healthy individual who can produce insulin, and should not be confused with physiologic ketosis.
Treatment centers on limiting intake of ammonia and increasing its excretion. Dietary protein, a metabolic source of ammonium, is restricted and caloric intake is provided by glucose and fat. Intravenous arginine (argininosuccinase deficiency) sodium phenylbutyrate and sodium benzoate (ornithine transcarbamoylase deficiency) are pharmacologic agents commonly used as adjunctive therapy to treat hyperammonemia in patients with urea cycle enzyme deficiencies. Sodium phenylbutyrate and sodium benzoate can serve as alternatives to urea for the excretion of waste nitrogen. Phenylbutyrate, which is the product of phenylacetate, conjugates with glutamine to form phenylacetylglutamine, which is excreted by the kidneys. Similarly, sodium benzoate reduces ammonia content in the blood by conjugating with glycine to form hippuric acid, which is rapidly excreted by the kidneys. A preparation containing sodium phenylacetate and sodium benzoate is available under the trade name Ammonul.
Acidification of the intestinal lumen using lactulose can decrease ammonia levels by protonating ammonia and trapping it in the stool. This is a treatment for hepatic encephalopathy.
Treatment of severe hyperammonemia (serum ammonia levels greater than 1000 μmol/L) should begin with hemodialysis if it is otherwise medically appropriate and tolerated.
Novel zinc biomarkers, such as the erythrocyte LA:DGLA ratio, have shown promise in pre-clinical and clinical trials and are being developed to more accurately detect dietary zinc deficiency.
Vitamin E deficiency is rare and is almost never caused by a poor diet. Instead, there are three specific situations when a vitamin E deficiency is likely to occur:
- Premature, very low birth weight infants - birth weights less than 1500 grams, or 3.5 pounds. A neonatologist, a pediatrician specializing in the care of newborns, typically evaluates the nutritional needs of premature infants.
- Rare disorders of fat metabolism - There is a rare genetic condition termed isolated vitamin E deficiency or 'ataxia with isolated with vitamin E deficiency', caused by mutations in the gene for the tocopherol transfer protein. These individuals have an extremely poor capacity to absorb vitamin E and develop neurological complications that are reversed by high doses of vitamin E.
- Fat malabsorption - Some dietary fat is needed for the absorption of vitamin E from the gastrointestinal tract. Anyone diagnosed with cystic fibrosis, individuals who have had part or all of their stomach removed or who have had a gastric bypass, and individuals with malabsorptive problems such as Crohn's disease, liver disease or exocrine pancreatic insufficiency may not absorb fat (people who cannot absorb fat often pass greasy stools or have chronic diarrhea and bloating). Abetalipoproteinemia is a rare inherited disorder of fat metabolism that results in poor absorption of dietary fat and vitamin E. The vitamin E deficiency associated with this disease causes problems such as poor transmission of nerve impulses, muscle weakness, and degeneration of the retina that can cause blindness.
A wide variety of companies manufacture ketone screening strips. A strip consists of a thin piece of plastic film slightly larger than a matchstick, with a reagent pad on one end that is either dipped into a urine sample or passed through the stream while the user is voiding. The pad is allowed to react for an exact, specified amount of time (it is recommended to use a stopwatch to time this exactly and disregard any resultant colour change after the specified time); its resulting colour is then compared to a graded shade chart indicating a detection range from negative presence of ketones up to a significant quantity. It is worth noting that in severe diabetic ketoacidosis, the dipstix reaction based on sodium nitroprusside may underestimate the level of ketone bodies in the blood. It is sensitive to acetoacetate only, and the ratio of beta-hydroxybutyrate to acetoacetate is shifted from a normal value of around 1:1 up to around 10:1 under severely ketoacetotic conditions, due to a changing redox milieu in the liver. Measuring acetoacetate alone will thus underestimate the accompanying beta-hydroxybutyrate if the standard conversion factor is applied.
Serum B levels are often low in B deficiency, but if other features of B deficiency are present with normal B then further investigation is warranted. One possible explanation for normal B levels in B deficiency is antibody interference in people with high titres of intrinsic factor antibody.
Some researchers propose that the current standard norms of vitamin B levels are too low.
One Japanese study states the normal limits as 500–1,300 pg/mL. Range of vitamin B12 levels in humans is considered as normal: >300 pg/mL; moderate deficiency: 201–300 pg/mL; and severe deficiency: <201 pg/mL.
Serum vitamin B tests results are in pg/mL (picograms/milliliter) or pmol/L (picomoles/liter). The laboratory reference ranges for these units are similar, since the molecular weight of B is approximately 1000, the difference between mL and L. Thus: 550 pg/mL = 400 pmol/L.
Serum homocysteine and methylmalonic acid levels are considered more reliable indicators of B deficiency than the concentration of B in blood. The levels of these substances are high in B deficiency and can be helpful if the diagnosis is unclear.
Routine monitoring of methylmalonic acid levels in urine is an option for people who may not be getting enough dietary B, as a rise in methylmalonic acid levels may be an early indication of deficiency.
If nervous system damage is suspected, B analysis in cerebrospinal fluid is possible, though such an invasive test should be considered only if blood testing is inconclusive.
The Schilling test has been largely supplanted by tests for antiparietal cell and intrinsic factor antibodies.
This condition is inherited in an autosomal recessive pattern and is extremely rare having only been reported in 50 to 60 individuals throughout the world.
Mutations in the "ACAT1" gene cause beta-ketothiolase deficiency. The enzyme made by the "ACAT1" gene plays an essential role in breaking down proteins and fats in the diet. Specifically, the enzyme is responsible for processing isoleucine, an amino acid that is part of many proteins. This enzyme also processes ketones, which are produced during the breakdown of fats. If a mutation in the "ACAT1" gene reduces or eliminates the activity of this enzyme, the body is unable to process isoleucine and ketones properly. As a result, harmful compounds can build up and cause the blood to become too acidic (ketoacidosis), which impairs tissue function, especially in the central nervous system.
The National Institutes of Health has found that "Large amounts of folic acid can mask the damaging effects of vitamin B deficiency by correcting the megaloblastic anemia caused by vitamin B deficiency without correcting the neurological damage that also occurs", there are also indications that "high serum folate levels might not only mask vitamin B deficiency, but could also exacerbate the anemia and worsen the cognitive symptoms associated with vitamin B deficiency". Due to the fact that in the United States legislation has required enriched flour to contain folic acid to reduce cases of fetal neural-tube defects, consumers may be ingesting more than they realize. To counter the masking effect of B deficiency the NIH recommends "folic acid intake from fortified food and supplements should not exceed 1,000 μg daily in healthy adults." Most importantly, B deficiency needs to be treated with B repletion. Limiting folic acid will not counter the irrevocable neurological damage that is caused by untreated B deficiency.
Screening for ketonuria is done frequently for acutely ill patients, presurgical patients, and pregnant women. Any diabetic patient who has elevated levels of blood and urine glucose should be tested for urinary ketones. In addition, when diabetic treatment is being switched from insulin to oral hypoglycemic agents, the patient's urine should be monitored for ketonuria. The development of ketonuria within 24 hours after insulin withdrawal usually indicates a poor response to the oral hypoglycemic agents. Diabetic patients should have their urine tested regularly for glucose and ketones, particularly when acute infection or other illness develops.
In conditions associated with acidosis, urinary ketones are tested to assess the severity of acidosis and to monitor treatment response. Urine ketones appear before there is any significant increase in blood ketones; therefore, urine ketone measurement is especially helpful in emergency situations.
Some clinicians regard eliminating carbohydrates as unhealthy and dangerous. However, it is not necessary to eliminate carbohydrates from the diet completely to achieve ketosis. Other clinicians regard ketosis as a safe biochemical process that occurs during the fat-burning state. Ketosis, which is accompanied by gluconeogenesis (the creation of glucose de novo from pyruvate), is the specific state that concerns some clinicians. However, it is unlikely for a normally functioning person to reach life-threatening levels of ketosis, defined as serum beta-hydroxybutyrate (B-OHB) levels above 15 millimolar (mM) compared to ketogenic diets among non diabetics, which "rarely run serum B-OHB levels above 3 mM." This is avoided with proper basal secretion of pancreatic insulin. People who are unable to secrete basal insulin, such as type 1 diabetics and long-term type II diabetics, are liable to enter an unsafe level of ketosis, eventually resulting in a coma that requires emergency medical treatment. The anti-ketosis conclusions have been challenged by a number of doctors and advocates of low-carbohydrate diets, who dispute assertions that the body has a preference for glucose and that there are dangers associated with ketosis.