Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The differential diagnoses are extensive and include: Alagille syndrome, alpha-1-antitrypsin deficiency, Byler disease (progressive familial intrahepatic cholestasis), Caroli disease, choledochal cyst, cholestasis, congenital cytomegalovirus disease, congenital herpes simplex virus infection, congenital rubella, congenital syphilis, congenital toxoplasmosis, cystic fibrosis, galactosemia, idiopathic neonatal hepatitis, lipid storage disorders, neonatal hemochromatosis, and total parenteral nutrition-associated cholestasis.
Diagnosis is made by an assessment of symptoms, physical exam, and medical history, in conjunction with blood tests, a liver biopsy, and imaging. Diagnosis is often made following investigation of prolonged jaundice that is resistant to phototherapy and/or exchange transfusions, with abnormalities in liver enzyme tests. Ultrasound or other forms of imaging can confirm the diagnosis. Further testing may include radioactive scans of the liver and a liver biopsy.
Alagille syndrome can be determined by a special kind of newborn screening wherein DNA samples are analyzed for markers in the JAG1 section. The DNA sequence patterns of a child will be analyzed for probabilistic deletions and therefore takes weeks to complete. After detection, the child should be treated with vitamins and necessary diet to develop the liver function postnatally.
Biochemical markers include a normal GGT for PFIC-1 and -2, with a markedly elevated GGT for PFIC-3. Serum bile acid levels are grossly elevated. Serum cholesterol levels are typically not elevated, as is seen usually in cholestasis, as the pathology is due to a transporter as opposed to an anatomical problem with biliary cells.
While Gilbert's syndrome is considered harmless, it is clinically important because it may give rise to a concern about a blood or liver condition, which could be more dangerous. However, these conditions have additional indicators:
- Hemolysis can be excluded by a full blood count, haptoglobin, lactate dehydrogenase levels, and the absence of reticulocytosis (elevated reticulocytes in the blood would usually be observed in haemolytic anaemia).
- Viral hepatitis can be excluded by negative blood samples for antigens specific to the different hepatitis viruses.
- Cholestasis can be excluded by normal levels of bile acids in plasma, the absence of lactate dehydrogenase, low levels of conjugated bilirubin, and ultrasound scan of the bile ducts.
- More severe types of glucuronyl transferase disorders such as Crigler–Najjar syndrome (types I and II) are much more severe, with 0–10% UGT1A1 activity, with sufferers at risk of brain damage in infancy (type I) and teenage years (type II).
- Dubin–Johnson syndrome and Rotor syndrome are rarer autosomal recessive disorders characterized by an increase of conjugated bilirubin.
- In GS, unless another disease of the liver is also present, the liver enzymes ALT/SGPT and AST/SGOT, as well as albumin, are within normal ranges.
Dubin–Johnson syndrome is similar to Rotor syndrome, but can be differentiated by:
Prognosis is good, and treatment of this syndrome is usually unnecessary. Most patients are asymptomatic and have normal lifespans. Some neonates present with cholestasis. Hormonal contraceptives and pregnancy may lead to overt jaundice and icterus (yellowing of the eyes and skin).
MRI will help with the diagnosis of structural abnormality of the brain. Genetic testing may also be pursued.
MDDS is diagnosed based on systemic symptoms presenting in infants, followed by a clinical examination and laboratory tests (for example, high lactate levels are common) medical imaging, and usually is finally confirmed and formally identified by genetic testing.
The disease is typically progressive, leading to fulminant liver failure and death in childhood, in the absence of liver transplantation. Hepatocellular carcinoma may develop in PFIC-2 at a very early age; even toddlers have been affected.
Typically no treatment is needed. If jaundice is significant phenobarbital may be used.
On microscopic examination of liver biopsy specimens, PBC is characterized by interlobular bile duct destruction. These histopathologic findings in primary biliary cholangitis include the following:
- Inflammation of the bile ducts, characterized by intraepithelial lymphocytes, and
- Periductal epithelioid granulomata.
Early treatment is possible once the disease is detected. Once the classical symptoms appear, the best way to eliminate the dangers of Alagille syndrome is a full liver transplant. Most of the short-term treatments available are aimed at improving the functioning of the heart and reducing the effects of impaired liver, kidney, and spleen function.
To diagnose PBC, it needs to be distinguished from other conditions with similar symptoms, such as autoimmune hepatitis or primary sclerosing cholangitis (PSC).
- Abnormalities in liver enzyme tests are usually present and elevated gamma-glutamyl transferase and alkaline phosphatase (ALP) are found in early disease. Elevations in bilirubin occur in advanced disease.
- Antimitochondrial antibodies are the characteristic serological marker for PBC, being found in 90%-95% of patients and only 1% of controls. PBC patients have AMA against pyruvate dehydrogenase complex (PDC-E2), an enzyme complex that is found in the mitochondria. Those people who are AMA negative but with disease similar to PBC have been found to have AMAs when more sensitive detection methods are employed.
- Other auto-antibodies may be present:
- Abdominal ultrasound, MR scanning (MRCP) or a CT scan is usually performed to rule out blockage to the bile ducts. This may be needed if a condition causing secondary biliary cirrhosis, such as other biliary duct disease or gallstones, needs to be excluded. A liver biopsy may help, and if uncertainty remains as in some patients, an endoscopic retrograde cholangiopancreatography (ERCP), an endoscopic investigation of the bile duct, may be performed.
Most patients can be diagnosed without invasive investigation, as the combination of anti-mitochondrial antibodies and typical (cholestatic) liver enzyme tests are considered diagnostic. However, a liver biopsy is needed to determine the stage of disease.
The brain is usually grossly abnormal in outline when someone is diagnosed with Miller–Dieker syndrome. Only a few shallow sulci and shallow Sylvian fissures are seen; this takes on an hourglass or figure-8 appearance on the axial imaging. The thickness and measurement for a person without MDS is 3–4 mm. With MDS, a person's cortex is measured at 12–20 mm.
While no cure for MDS is available yet, many complications associated with this condition can be treated, and a great deal can be done to support or compensate for functional disabilities. Because of the diversity of the symptoms, it can be necessary to see a number of different specialists and undergo various examinations, including:
- Developmental evaluation
- Cardiologists evaluation
- Otolaryngology
- Treatment of seizures
- Urologic evaluation
- Genetic counseling-balanced chromosomal translocation should be excluded in a parents with an affected child are planning another pregnancy, so parents with affected children should visit a genetic counselor.
While most pregnant women experience some itch from time to time, itching on the palms and soles without a visible rash, or persisting severe or extensive itch symptoms should be reported to the midwife or obstetrican.
To obtain a diagnosis of ICP, there are two LFT (liver function tests) and Serum bile acid test. The liver function tests (LFTs) is a simple blood test, the results of which should be available by the next day. If the ALT level is elevated, this, plus pruritus of palms and soles, could be considered as potentially diagnostic of ICP but only with elevated bile acid levels (however LFTs are not always elevated in ICP patients). The serum bile acid blood test for ICP is a quantitative measurement of bile salts. The results of this test often take longer to return, but the test is more specific for ICP.
Other problems with the liver that occur in pregnancy should be considered by the treating clinician. These include preeclampsia, the HELLP syndrome, and acute fatty liver of pregnancy. Furthermore, other causes of hepatitis, like hepatitis viruses, cancer and certain medications, should also be considered.
Cholestasis can be suspected when there is an elevation of both 5'-nucleotidase and ALP enzymes. With a few exceptions, the optimal test for cholestasis would be elevations of serum bile acid levels. However, this is not normally available in most clinical settings. The gamma-glutamyl transferase (GGT) enzyme was previously thought to be helpful in confirming a hepatic source of ALP; however, GGT elevations lack the necessary specificity to be a useful confirmatory test for ALP. Normally GGT and ALP are anchored to membranes of hepatocytes and are released in small amounts in hepatocellular damage. In cholestasis, synthesis of these enzymes is induced and they are made soluble. GGT is elevated because it leaks out from the bile duct cells due to pressure from inside bile ducts.
In a later stage of cholestasis AST, ALT and bilirubin may be elevated due to liver damage as a secondary effect of cholestasis.
DGUOK, POLG, and MPV17 related forms result in defects to the liver. Liver dysfunction is progressive in the majority of individuals with both forms of DGUOK-related MDS and is the most common cause of death. For children with the multi-organ form, liver transplantation provides no survival benefit.
Liver disease typically progresses to liver failure in affected children with MPV17-related MDS and liver transplantation remains the only treatment option for liver failure. Approximately half of affected children reported did not undergo liver transplantation and died because of progressive liver failure – the majority during infancy or early childhood. A few children were reported to survive without liver transplantation.
Because LAL deficiency is inherited, each sibling of an affected individual has a 25% chance of having pathological mutations in LAL genes from both their mother and their father, a 50% chance of having a pathological mutation in only one gene, and a 25% chance of having no pathological mutations. Genetic testing for family members and genetic prenatal diagnosis of pregnancies for women who are at increased risk are possible if family members carrying pathological mutations have been identified.
One 10-year-old girl with Crigler–Najjar syndrome type I was successfully treated by liver cell transplantation.
The homozygous Gunn rat, which lacks the enzyme uridine diphosphate glucuronyltransferase (UDPGT), is an animal model for the study of Crigler–Najjar syndrome. Since only one enzyme is working improperly, gene therapy for Crigler-Najjar is a theoretical option which is being investigated.
Diagnosis is often by measuring the serum bilirubin level in the blood. In those who are born after 35 weeks and are more than a day old transcutaneous bilirubinometer may also be used. The use of an icterometer, a piece of transparent plastic painted in five transverse strips of graded yellow lines, is not recommended.
The bilirubin levels for initiative of phototherapy varies depends on the age and health status of the newborn. However, any newborn with a total serum bilirubin greater than 359 μmol/l ( 21 mg/dL) should receive phototherapy.
Computed tomography (CT) findings in AIP include a "diffusely enlarged hypodense" pancreas or a focal mass that may be mistaken for a pancreatic malignancy. A low-density, "capsule-like rim on CT" (possibly corresponding to an inflammatory process involving peripancreatic tissues) is thought to be an additional characteristic feature (thus the mnemonic: "sausage-shaped"). Magnetic resonance imaging (MRI) reveals a diffusely decreased signal intensity and delayed enhancement on dynamic scanning. The characteristic ERCP finding is segmental or diffuse irregular narrowing of the main pancreatic duct, usually accompanied by an extrinsic-appearing stricture of the distal bile duct. Changes in the extrapancreatic bile duct similar to those of primary sclerosing cholangitis (PSC) have been reported.
The role of endoscopic ultrasound (EUS) and EUS-guided fine-needle aspiration (EUS-FNA) in the diagnosis of AIP is not well described, and EUS findings have been described in only a small number of patients. In one study, EUS revealed a diffusely swollen and hypoechoic pancreas in 8 of the 14 (57%) patients, and a solitary, focal, irregular mass was observed in 6 (46%) patients. Whereas EUS-FNA is sensitive and specific for the diagnosis of pancreatic malignancy, its role in the diagnosis of AIP remains unclear.
Upon diagnosis, many providers will prescribe Ursodeoxycholic Acid. While there is no cure for ICP, and no way to guarantee a successful outcome, studies have shown a slightly better fetal and maternal outcome from administration of Ursodeoxycholic Acid, whereas Cholestyramine appears to only relieve itching.
If additional blood tests to check clotting function identify a problem, giving Vitamin K may help avoid the risk of hemorrhage at delivery.
Delivery by 35–37 completed weeks may be important to fetal outcome as a recent study demonstrated that in severe ICP (defined as bile acids greater than 40 umol/L) the risk of stillbirth was 1.5% compared to 0.5% of uncomplicated pregnancies. This risk rose further if bile acids doubled,