Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The main pumping chamber, the ventricle, is protected (to a certain extent) against excessively high rates arising from the supraventricular areas by a "gating mechanism" at the atrioventricular node, which allows only a proportion of the fast impulses to pass through to the ventricles. In Wolff-Parkinson-White syndrome, a "bypass tract" avoids this node and its protection and the fast rate may be directly transmitted to the ventricles. This situation has characteristic findings on ECG.
Subtypes of SVT can usually be distinguished by their electrocardiogram (ECG) characteristics
Most have a narrow QRS complex, although, occasionally, electrical conduction abnormalities may produce a wide QRS complex that may mimic ventricular tachycardia (VT). In the clinical setting, the distinction between narrow and wide complex tachycardia (supraventricular vs. ventricular) is fundamental since they are treated differently. In addition, ventricular tachycardia can quickly degenerate to ventricular fibrillation and death and merits different consideration. In the less common situation in which a wide-complex tachycardia may actually be supraventricular, a number of algorithms have been devised to assist in distinguishing between them. In general, a history of structural heart disease markedly increases the likelihood that the tachycardia is ventricular in origin.
- Sinus tachycardia is physiologic or "appropriate" when a reasonable stimulus, such as the catecholamine surge associated with fright, stress, or physical activity, provokes the tachycardia. It is identical to a normal sinus rhythm except for its faster rate (>100 beats per minute in adults). Sinus tachycardia is considered by most sources to be an SVT.
- Sinoatrial node reentrant tachycardia (SANRT) is caused by a reentry circuit localised to the SA node, resulting in a P-wave of normal shape and size (morphology) that falls before a regular, narrow QRS complex. It cannot be distinguished electrocardiographically from sinus tachycardia unless the sudden onset is observed (or recorded on a continuous monitoring device). It may sometimes be distinguished by its prompt response to vagal maneuvers.
- Ectopic (unifocal) atrial tachycardia arises from an independent focus within the atria, distinguished by a consistent P-wave of abnormal shape and/or size that falls before a narrow, regular QRS complex. It is caused by "automaticity", which means that some cardiac muscle cells, which have the primordial ("primitive, inborn, inherent") ability to generate electrical impulses that is common to all cardiac muscle cells, have established themselves as a 'rhythm center' with a natural rate of electrical discharge that is faster than the normal SA node.
- Multifocal atrial tachycardia (MAT) is tachycardia arising from at least three ectopic foci within the atria, distinguished by P-waves of at least three different morphologies that all fall before irregular, narrow QRS complexes. This rhythm is most commonly seen in elderly people with COPD.
- Atrial fibrillation meets the definition of SVT when associated with a ventricular response greater than 100 beats per minute. It is characterized as an "irregularly irregular rhythm" both in its atrial and ventricular depolarizations and is distinguished by its fibrillatory atrial waves that, at some point in their chaos, stimulate a response from the ventricles in the form of irregular, narrow QRS complexes.
- Atrial flutter, is caused by a re-entry rhythm in the atria, with a regular atrial rate often of about 300 beats per minute. On the ECG this appears as a line of "sawtooth" waves preceding the QRS complex. The AV node will not usually conduct 300 beats per minute so the P:QRS ratio is usually 2:1 or 4:1 pattern, (though rarely 3:1, and sometimes 1:1 where class IC antiarrhythmic drug are in use). Because the ratio of P to QRS is usually consistent, A-flutter is often regular in comparison to its irregular counterpart, atrial fibrillation. Atrial flutter is also not necessarily a tachycardia unless the AV node permits a ventricular response greater than 100 beats per minute.
- AV nodal reentrant tachycardia (AVNRT) involves a reentry circuit forming next to, or within, the AV node. The circuit most often involves two tiny pathways one faster than the other. Because the node is immediately between the atria and ventricle, the re-entry circuit often stimulates both, appearing as a backward (retrograde) conducted P-wave buried within or occurring just "after" the regular, narrow QRS complexes.
- Atrioventricular reciprocating tachycardia (AVRT), also results from a reentry circuit, although one physically much larger than AVNRT. One portion of the circuit is usually the AV node, and the other, an abnormal accessory pathway (muscular connection) from the atria to the ventricle. Wolff-Parkinson-White syndrome is a relatively common abnormality with an accessory pathway, the bundle of Kent crossing the AV valvular ring.
- In orthodromic AVRT, atrial impulses are conducted down through the AV node and retrogradely re-enter the atrium via the accessory pathway. A distinguishing characteristic of orthodromic AVRT can therefore be a P-wave that follows each of its regular, narrow QRS complexes, due to retrograde conduction.
- In antidromic AVRT, atrial impulses are conducted down through the accessory pathway and re-enter the atrium retrogradely via the AV node. Because the accessory pathway initiates conduction in the ventricles outside of the bundle of His, the QRS complex in antidromic AVRT is often wider than usual, with a delta wave.
- Finally, junctional ectopic tachycardia (JET) is a rare tachycardia caused by increased automaticity of the AV node itself initiating frequent heart beats. On the ECG, junctional tachycardia often presents with abnormal morphology P-waves that may fall anywhere in relation to a regular, narrow QRS complex. It is often due to drug toxicity.
Treatment is aimed at slowing the rate by correcting acidosis, correcting electrolytes (especially magnesium and calcium), cooling the patient, and antiarrhythmic medications. Occasionally pacing of the atrium at a rate higher than the JET may allow improved cardiac function by allowing atrial and ventricular synchrony.
A 1994 study at the Adolph Basser Institute of Cardiology found that amiodarone, an antiarrhythmic agent, could be used safely and relatively effectively.
JET occurring after the first six months of life is somewhat more variable, but may still be difficult to control. Treatment of non-post-operative JET is typically with antiarrhythmic medications or a cardiac catheterization with ablation (removal of affected tissue). A cardiac catheterization may be performed to isolate and ablate (burn or freeze) the source of the arrhythmia. This can be curative in the majority of cases. The use of radiofrequency energy is infrequently associated with damage to the normal conduction due to the close proximity to the AV node, the normal conduction tissue. The use of cryotherapy (cold energy) appears to be somewhat safer, and can also be effective for the treatment of JET.
Junctional ectopic tachycardia (JET) is a rare syndrome of the heart that manifests in patients recovering from heart surgery. It is characterized by cardiac arrhythmia, or irregular beating of the heart, caused by abnormal conduction from or through the atrioventricular node (AV node). In newborns and infants up to 6 weeks old, the disease may also be referred to as His bundle tachycardia.
The echocardiogram is commonly used to confirm the diagnosis of MI. Color doppler flow on the transthoracic echocardiogram (TTE) will reveal a jet of blood flowing from the left ventricle into the left atrium during ventricular systole. Also, it may detect a dilated left atrium and ventricle and decreased left ventricular function.
Because of inability to obtain accurate images of the left atrium and the pulmonary veins with a transthoracic echocardiogram, a transesophageal echocardiogram may be necessary in some cases to determine the severity of MI.
A less invasive method for detecting a PFO or other ASDs than transesophagal ultrasound is transcranial Doppler with bubble contrast. This method reveals the cerebral impact of the ASD or PFO.
The chest X-ray in individuals with chronic MI is characterized by enlargement of the left atrium and the left ventricle. The pulmonary vascular markings are typically normal, since pulmonary venous pressures are usually not significantly elevated.
In transthoracic echocardiography, an atrial septal defect may be seen on color flow imaging as a jet of blood from the left atrium to the right atrium.
If agitated saline is injected into a peripheral vein during echocardiography, small air bubbles can be seen on echocardiographic imaging. Bubbles traveling across an ASD may be seen either at rest or during a cough. (Bubbles only flow from right atrium to left atrium if the right atrial pressure is greater than left atrial). Because better visualization of the atria is achieved with transesophageal echocardiography, this test may be performed in individuals with a suspected ASD which is not visualized on transthoracic imaging.
Newer techniques to visualize these defects involve intracardiac imaging with special catheters typically placed in the venous system and advanced to the level of the heart. This type of imaging is becoming more common and involves only mild sedation for the patient typically.
If the individual has adequate echocardiographic windows, use of the echocardiogram to measure the cardiac output of the left ventricle and the right ventricle independently is possible. In this way, the shunt fraction can be estimated using echocardiography.
The hemodynamic sequelae of AI are dependent on the rate of onset of AI. Therefore, can be acute or chronic as follows:
- Acute aortic insufficiency In acute AI, as may be seen with acute perforation of the aortic valve due to endocarditis, there will be a sudden increase in the volume of blood in the left ventricle. The ventricle is unable to deal with the sudden change in volume. The filling pressure of the left ventricle will increase. This causes pressure in the left atrium to rise, and the individual will develop pulmonary edema. Severe acute aortic insufficiency is considered a medical emergency. There is a high mortality rate if the individual does not undergo immediate surgery for aortic valve replacement.
- Chronic aortic insufficiency If the individual survives the initial hemodynamic derailment that acute AI presents as, the left ventricle adapts by eccentric hypertrophy and dilatation of the left ventricle, and the volume overload is compensated for. The left ventricular filling pressures will revert to normal and the individual will no longer have overt heart failure. In this compensated phase, the individual may be totally asymptomatic and may have normal exercise tolerance. Eventually (typically after a latency period) the left ventricle will become decompensated, and filling pressures will increase.Some individuals enter this decompensated phase asymptomatically, treatment for AI involves aortic valve replacement prior to this decompensation phase.
The physical examination of an individual with aortic insufficiency involves auscultation of the heart to listen for the murmur of aortic insufficiency and the S3 heart sound (S3 gallop correlates with development of LV dysfunction). The murmur of chronic aortic insufficiency is typically described as early diastolic and decrescendo, which is best heard in the third left intercostal space and may radiate along the left sternal border.
If there is increased stroke volume of the left ventricle due to volume overload, an ejection systolic 'flow' murmur may also be present when auscultating the same aortic area. Unless there is concomitant aortic valve stenosis, the murmur should not start with an ejection click.There may also be an Austin Flint murmur, a soft mid-diastolic rumble heard at the apical area, it appears when regurgitant jet from the severe aortic insufficiency renders partial closure of the anterior mitral leaflet.Peripheral physical signs of aortic insufficiency are related to the high pulse pressure and the rapid decrease in blood pressure during diastole due to blood returning to the heart from the aorta through the incompetent aortic valve, although the usefulness of some of the eponymous signs has been questioned: Phonocardiograms detect AI by having electric voltage mimic the sounds the heart makes.
"Characteristics"- indicative of aortic regurgitation are as follow:
In general, the Duke criteria should be fulfilled in order to establish the diagnosis of endocarditis. The blood tests C reactive protein (CRP) and procalcitonin have not been found to be particularly useful in helping make or rule out the diagnosis.
As the Duke criteria rely heavily on the results of echocardiography, research has addressed when to order an echocardiogram by using signs and symptoms to predict occult endocarditis among patients with intravenous drug abuse and among non drug-abusing patients. Unfortunately, this research is over 20 years old and it is possible that changes in the epidemiology of endocarditis and bacteria such as staphylococci make the following estimates incorrect.
The transthoracic echocardiogram has a sensitivity and specificity of approximately 65% and 95% if the echocardiographer believes there is 'probable' or 'almost certain' evidence of endocarditis.
The disorder can be considered very likely in a totally blind person with periodic insomnia and daytime sleepiness, although other causes for these common symptoms need to be ruled out. In the research setting, the diagnosis can be confirmed, and the length of the free-running circadian cycle can be ascertained, by periodic assessment of circadian marker rhythms, such as the core body temperature rhythm, the timing of melatonin secretion, or by analyzing the pattern of the sleep–wake schedule using actigraphy. Most recent research has used serial measurements of melatonin metabolites in urine or melatonin concentrations in saliva. These assays are not currently available for routine clinical use.
Since 1979, the disorder has been recognized by the American Academy of Sleep Medicine:
- "Diagnostic Classification of Sleep and Arousal Disorders" (DCSAD), 1979: Non-24-Hour Sleep–Wake Syndrome; code C.2.d
- "The International Classification of Sleep Disorders", 1st & Revised eds. (ICSD), 1990, 1997: Non-24-Hour Sleep–Wake Syndrome (or Non-24-Hour Sleep–Wake Disorder); code 780.55-2
- "The International Classification of Sleep Disorders", 2nd ed. (ICSD-2), 2005: Non-24-Hour Sleep–Wake Syndrome (alternatively, Non-24-Hour Sleep–Wake Disorder); code 780.55-2
Since 2005, the disorder has been recognized by name in the U.S. National Center for Health Statistics and the U.S. Centers for Medicare and Medicaid Services in their adaptation and extension of the WHO's "International Statistical Classification of Diseases and Related Health Problems" (ICD):
- ICD-9-CM: Circadian rhythm sleep disorder, free-running type; code 327.34 became effective in October 2005. Prior to the introduction of this code, the nonspecific code 307.45, Circadian rhythm sleep disorder of nonorganic origin, was available, and as of 2014 remains the code recommended by the DSM-5.
- ICD-10-CM: Circadian rhythm sleep disorder, free running type; code G47.24 is due to take effect October 1, 2014.
Since 2013, the disorder has been recognized by the American Psychiatric Association:
- DSM-5, 2013: Circadian rhythm sleep–wake disorders, Non-24-hour sleep–wake type; ICD-9-CM code 307.45 is recommended (no acknowledgment of 327.34 is made), and ICD-10-CM code G47.24 is recommended when it goes into effect.
Diagnosis is usually made upon inspection. Differential diagnosis of tonsilloliths includes foreign body, calcified granuloma, malignancy, an enlarged temporal styloid process or rarely, isolated bone which is usually derived from embryonic rests originating from the branchial arches.
Tonsilloliths are difficult to diagnose in the absence of clear manifestations, and often constitute casual findings of routine radiological studies.
Imaging diagnostic techniques can identify a radiopaque mass that may be mistaken for foreign bodies, displaced teeth or calcified blood vessels. Computed tomography (CT) may reveal nonspecific calcified images in the tonsillar zone. The differential diagnosis must be established with acute and chronic tonsillitis, tonsillar hypertrophy, peritonsillar abscesses, foreign bodies, phlebolites, ectopic bone or cartilage, lymph nodes, granulomatous lesions or calcification of the stylohyoid ligament in the context of Eagle syndrome (elongated styloid process).
DSPD is diagnosed by a clinical interview, actigraphic monitoring, and/or a sleep diary kept by the patient for at least two weeks. When polysomnography is also used, it is primarily for the purpose of ruling out other disorders such as narcolepsy or sleep apnea. If a person can adjust to a normal daytime schedule on her/his own, with just the help of alarm clocks and will-power, the diagnosis is not given.
DSPD is frequently misdiagnosed or dismissed. It has been named as one of the sleep disorders most commonly misdiagnosed as a primary psychiatric disorder. DSPD is often confused with: psychophysiological insomnia; depression; psychiatric disorders such as schizophrenia, ADHD or ADD; other sleep disorders; or school refusal. Practitioners of sleep medicine point out the dismally low rate of accurate diagnosis of the disorder, and have often asked for better physician education on sleep disorders.
In medicine, insomnia is widely measured using the Athens insomnia scale. It is measured using eight different parameters related to sleep, finally represented as an overall scale which assesses an individual's sleep pattern.
A qualified sleep specialist should be consulted for the diagnosis of any sleep disorder so the appropriate measures can be taken. Past medical history and a physical examination need to be done to eliminate other conditions that could be the cause of insomnia. After all other conditions are ruled out a comprehensive sleep history should be taken. The sleep history should include sleep habits, medications (prescription and non-prescription), alcohol consumption, nicotine and caffeine intake, co-morbid illnesses, and sleep environment. A sleep diary can be used to keep track of the individual's sleep patterns. The diary should include time to bed, total sleep time, time to sleep onset, number of awakenings, use of medications, time of awakening and subjective feelings in the morning. The sleep diary can be replaced or validated by the use of out-patient actigraphy for a week or more, using a non-invasive device that measures movement.
Workers who complain of insomnia should not routinely have polysomnography to screen for sleep disorders. This test may be indicated for patients with symptoms in addition to insomnia, including sleep apnea, obesity, a thick neck diameter, or high-risk fullness of the flesh in the oropharynx. Usually, the test is not needed to make a diagnosis, and insomnia especially for working people can often be treated by changing a job schedule to make time for sufficient sleep and by improving sleep hygiene.
Some patients may need to do an overnight sleep study to determine if insomnia is present. Such a study will commonly involve assessment tools including a polysomnogram and the multiple sleep latency test. Specialists in sleep medicine are qualified to diagnose disorders within the, according to the ICSD, 81 major sleep disorder diagnostic categories. Patients with some disorders, including delayed sleep phase disorder, are often mis-diagnosed with primary insomnia; when a person has trouble getting to sleep and awakening at desired times, but has a normal sleep pattern once asleep, a circadian rhythm disorder is a likely cause.
In many cases, insomnia is co-morbid with another disease, side-effects from medications, or a psychological problem. Approximately half of all diagnosed insomnia is related to psychiatric disorders. In depression in many cases "insomnia should be regarded as a co-morbid condition, rather than as a secondary one;" insomnia typically predates psychiatric symptoms. "In fact, it is possible that insomnia represents a significant risk for the development of a subsequent psychiatric disorder." Insomnia occur in between 60% and 80% of people with depression. This may partly be due to treatment used for depression.
Determination of causation is not necessary for a diagnosis.
Travelling west causes fewer problems than travelling east, and it is usually sufficient to seek exposure to light during the day and avoid it at night.
A survey of 1.1 million residents in the United States found that those that reported sleeping about 7 hours per night had the lowest rates of mortality, whereas those that slept for fewer than 6 hours or more than 8 hours had higher mortality rates. Getting 8.5 or more hours of sleep per night was associated with a 15% higher mortality rate. Severe insomnia – sleeping less than 3.5 hours in women and 4.5 hours in men – is associated with a 15% increase in mortality.
With this technique, it is difficult to distinguish lack of sleep caused by a disorder which is also a cause of premature death, versus a disorder which causes a lack of sleep, and the lack of sleep causing premature death. Most of the increase in mortality from severe insomnia was discounted after controlling for co-morbid disorders. After controlling for sleep duration and insomnia, use of sleeping pills was also found to be associated with an increased mortality rate.
The lowest mortality was seen in individuals who slept between six and a half and seven and a half hours per night. Even sleeping only 4.5 hours per night is associated with very little increase in mortality. Thus, mild to moderate insomnia for most people is associated with increased longevity and severe insomnia is associated only with a very small effect on mortality. It is unclear why sleeping longer than 7.5 hours is associated with excess mortality.
EDS can be a symptom of a number of factors and disorders. Specialists in sleep medicine are trained to diagnose them. Some are:
- Insufficient quality or quantity of night time sleep.
- Misalignments of the body's circadian pacemaker with the environment (e.g. jet lag, shift work or other circadian rhythm sleep disorders).
- Another underlying sleep disorder, such as narcolepsy, sleep apnea, idiopathic hypersomnia or restless legs syndrome.
- Disorders such as clinical depression or atypical depression.
- Tumors, head trauma, anemia, kidney failure, hypothyroidism or an injury to the central nervous system.
- Drug abuse.
- Genetic predisposition
- Vitamin deficiency, such as Biotin deficiency
- Particular classes of prescription and OTC medication
Travelling east causes more problems than travelling west because the body clock has to be advanced, which is more difficult for the majority of humans than delaying it. Most people have an endogenous circadian rhythm that is longer than 24 hours, so lengthening a day is less troublesome than shortening it. Equally important, the necessary exposure to light to realign the body clock does not tie in with the day/night cycle at the destination.
Travelling east by six to nine time zones causes the biggest problems, as it is desirable to avoid light in the mornings. Waterhouse et al. recommend:
Travelling by 10 hours or more is usually best managed by assuming it is a 14-hour westward transition and delaying the body clock. A customised jet lag program can be obtained from an online jet lag calculator. These programs consider the sleep pattern of the user, the number of time zones crossed, and the direction of travel. The efficacy of these jet lag calculators has not been documented.
An adult who is compelled to nap repeatedly during the day may have excessive daytime sleepiness; however, it is important to distinguish between occasional daytime sleepiness and excessive daytime sleepiness, which is chronic.
A number of tools for screening for EDS have been developed. One is the Epworth Sleepiness Scale which grades the results of a questionnaire. The ESS generates a numerical score from zero (0) to 24 where a score of ten [10] or higher may indicate that the person should consult a specialist in sleep medicine for further evaluation.
Another tool is the Multiple Sleep Latency Test (MSLT), which has been used since the 1970s. It is used to measure the time it takes from the start of a daytime nap period to the first signs of sleep, called sleep latency. The test is based on the idea that the sleepier people are, the faster they will fall asleep.
The Maintenance of Wakefulness Test (MWT) is also used to quantitatively assess daytime sleepiness. This test is performed in a sleep diagnostic center. The test is similar to the MSLT. However, during this test the patient is instructed to try to stay awake.
This may include gargling with salt water or attempts to remove with a tooth pick or cotton swab.
In cut carotid arteries with 100 mL of blood through the heart at each beat (at 65 beats a minute), a completely severed artery will spurt blood for about 30 seconds and the blood will not spurt much higher than the human head. If the artery is just nicked, on the other hand, the blood will spurt longer but will be coming out under pressure and spraying much further.
To prevent hand ischemia, there is a "squirt test" that involves squirting blood from the radial artery, which is used in intraoperative assessment of collateral arm blood flow before radial artery harvest.
In 1933, a murder trial prompted a testimony from Dr. Clement Harrisse Arnold about how far blood could spurt from the neck: 6 inches (ca. 15 cm) vertically and 18 inches (ca. 46 cm) laterally.
Blood squirt (blood spurt, blood spray, blood gush, or blood jet) is the effect when an artery, a blood vessel in the human body (or other organism's body) is cut. Blood pressure causes the blood to bleed out at a rapid, intermittent rate, in a spray or jet, coinciding with the beating of the heart, rather than the slower, but steady flow of venous bleeding. Also known as arterial bleeding, arterial spurting, or arterial gushing, the amount of blood loss can be copious, occur very rapidly, and can lead to death.