Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Early treatment is essential to keep the affected limb viable. The treatment options include injection of an anticoagulant, thrombolysis, embolectomy, surgical revascularisation, or amputation. Anticoagulant therapy is initiated to prevent further enlargement of the thrombus. Continuous IV unfractionated heparin has been the traditional agent of choice.
If the condition of the ischemic limb is stabilized with anticoagulation, recently formed emboli may be treated with catheter-directed thrombolysis using intraarterial infusion of a thrombolytic agent (e.g., recombinant tissue plasminogen activator (tPA), streptokinase, or urokinase). A percutaneous catheter inserted into the femoral artery and threaded to the site of the clot is used to infuse the drug. Unlike anticoagulants, thrombolytic agents work directly to resolve the clot over a period of 24 to 48 hours.
Direct arteriotomy may be necessary to remove the clot. Surgical revascularization may be used in the setting of trauma (e.g., laceration of the artery). Amputation is reserved for cases where limb salvage is not possible. If the patient continues to have a risk of further embolization from some persistent source, such as chronic atrial fibrillation, treatment includes long-term oral anticoagulation to prevent further acute arterial ischemic episodes.
Decrease in body temperature reduces the aerobic metabolic rate of the affected cells, reducing the immediate effects of hypoxia. Reduction of body temperature also reduces the inflammation response and reperfusion injury. For frostbite injuries, limiting thawing and warming of tissues until warmer temperatures can be sustained may reduce reperfusion injury.
A number of devices have been used to assess the sufficiency of oxygen delivery to the colon. The earliest devices were based on tonometry, and required time to equilibrate and estimate the pHi, roughly an estimate of local CO levels. The first device approved by the U.S. FDA (in 2004) used visible light spectroscopy to analyze capillary oxygen levels. Use during aortic aneurysm repair detected when colon oxygen levels fell below sustainable levels, allowing real-time repair. In several studies, specificity has been 83% for chronic mesenteric ischemia and 90% or higher for acute colonic ischemia, with a sensitivity of 71%-92%. This device must be placed using endoscopy, however.
Computed tomography (CT) and MRI scanning will show damaged area in the brain, showing that the symptoms were not caused by a tumor, subdural hematoma or other brain disorder. The blockage will also appear on the angiogram.
In order to treat acute limb ischaemia there are a series of things that can be done to determine where the occlusion is located, the severity, and what the cause was. To find out where the occlusion is located one of the things that can be done is simply a pulse examination to see where the heart rate can be detected and where it stops being sensed. Also there is a lower body temperature below the occlusion as well as paleness. A Doppler evaluation is used to show the extent and severity of the ischaemia by showing flow in smaller arteries. Other diagnostical tools are duplex ultrasonography, computed tomography angiography (CTA), and magnetic resonance angiography (MRA). The CTA and MRA are used most often because the duplex ultrasonography although non-invasive is not precise in planning revascularization. CTA uses radiation and may not pick up on vessels for revascularization that are distal to the occlusion, but it is much quicker than MRA. In treating acute limb ischaemia time is everything.
In the worst cases acute limb ischaemia progresses to critical limb ischaemia, and results in death or limb loss. Early detection and steps towards fixing the problem with limb-sparing techniques can salvage the limb. Compartment syndrome can occur because of acute limb ischaemia because of the biotoxins that accumulate distal to the occlusion resulting in edema.
Upon suspicion of PAD, the first-line study is the ankle–brachial index (ABI). When the blood pressure readings in the ankles is lower than that in the arms, blockages in the arteries which provide blood from the heart to the ankle are suspected. Normal ABI range of 1.00 to 1.40.The patient is diagnosed with PAD when the ABI is ≤ 0.90 . ABI values of 0.91 to 0.99 are considered "borderline" and values >1.40 indicate noncompressible arteries. PAD is graded as mild to moderate if the ABI is between 0.41 and 0.90, and an ABI less than 0.40 is suggestive of severe PAD. These relative categories have prognostic value.
In people with suspected PAD but normal resting ABIs, exercise testing of ABI can be done. A base line ABI is obtained prior to exercise. The patient is then asked to exercise (usually patients are made to walk on a treadmill at a constant speed) until claudication pain occurs (or a maximum of 5 minutes), following which the ankle pressure is again measured. A decrease in ABI of 15%-20% would be diagnostic of PAD.
It is possible for conditions which stiffen the vessel walls (such as calcifications that occur in the setting of long term diabetes) to produce false negatives usually, but not always, indicated by abnormally high ABIs (> 1.40). Such results and suspicions merit further investigation and higher level studies.
If ABIs are abnormal the next step is generally a lower limb doppler ultrasound examination to look at site and extent of atherosclerosis. Other imaging can be performed by angiography, where a catheter is inserted into the common femoral artery and selectively guided to the artery in question. While injecting a radiodense contrast agent an X-ray is taken. Any flow limiting stenoses found in the x-ray can be identified and treated by atherectomy, angioplasty or stenting. Contrast angiography is the most readily available and widely used imaging technique.
Modern multislice computerized tomography (CT) scanners provide direct imaging of the arterial system as an alternative to angiography.
Magnetic resonance angiography (MRA) is a noninvasive diagnostic procedure that uses a combination of a large magnet, radio frequencies, and a computer to produce detailed images to provide pictures of blood vessels inside the body. The advantages of MRA include its safety and ability to provide high-resolution three-dimensional (3D) imaging of the entire abdomen, pelvis and lower extremities in one sitting.
As the cause of the ischemia can be due to embolic or thrombotic occlusion of the mesenteric vessels or nonocclusive ischemia, the best way to differentiate between the etiologies is through the use of mesenteric angiography. Though it has serious risks, angiography provides the possibility of direct infusion of vasodilators in the setting of nonocclusive ischemia.
An inadequate flow of blood to a part of the body may be caused by any of the following:
- Thoracic outlet syndrome (compression of the brachial plexus)
- Atherosclerosis (lipid-laden plaques obstructing the lumen of arteries)
- Hypoglycemia (lower than normal level of glucose)
- Tachycardia (abnormally rapid beating of the heart)
- Radiotherapy
- Hypotension (low blood pressure, e.g. in septic shock, heart failure)
- Outside compression of a blood vessel, e.g. by a tumor or in the case of superior mesenteric artery syndrome
- Sickle cell disease (abnormally shaped red blood cells)
- Induced g-forces which restrict the blood flow and force the blood to the extremities of the body, as in acrobatics and military flying
- Localized extreme cold, such as by frostbite or improper cold compression therapy
- Tourniquet application
- An increased level of glutamate receptor stimulation
- Arteriovenous malformations, and peripheral artery occlusive disease
- rupture of significant blood vessels supplying a tissue or organ.
- Anemia vasoconstricts the periphery so that red blood cells can work internally on vital organs such as the heart, brain, etc., thus causing lack of oxygen to the periphery.
- Premature discontinuation of any oral anticoagulant.
- Unconsciousness, such as due to the ingestion of excessive doses of central depressants like alcohol or opioids, can result in ischemia of the extremities due to unusual body positions that prevent normal circulation
It is not clear if screening for disease is useful as it has not been properly studied.
In last decade, similar to myocardial infarction treatment, thrombolytic drugs were introduced in the therapy of cerebral infarction. The use of intravenous rtPA therapy can be advocated in patients who arrive to stroke unit and can be fully evaluated within 3 h of the onset.
If cerebral infarction is caused by a thrombus occluding blood flow to an artery supplying the brain, definitive therapy is aimed at removing the blockage by breaking the clot down (thrombolysis), or by removing it mechanically (thrombectomy). The more rapidly blood flow is restored to the brain, the fewer brain cells die. In increasing numbers of primary stroke centers, pharmacologic thrombolysis with the drug tissue plasminogen activator (tPA), is used to dissolve the clot and unblock the artery.
Another intervention for acute cerebral ischaemia is removal of the offending thrombus directly. This is accomplished by inserting a catheter into the femoral artery, directing it into the cerebral circulation, and deploying a corkscrew-like device to ensnare the clot, which is then withdrawn from the body. Mechanical embolectomy devices have been demonstrated effective at restoring blood flow in patients who were unable to receive thrombolytic drugs or for whom the drugs were ineffective, though no differences have been found between newer and older versions of the devices. The devices have only been tested on patients treated with mechanical clot embolectomy within eight hours of the onset of symptoms.
Angioplasty and stenting have begun to be looked at as possible viable options in treatment of acute cerebral ischaemia. In a systematic review of six uncontrolled, single-center trials, involving a total of 300 patients, of intra-cranial stenting in symptomatic intracranial arterial stenosis, the rate of technical success (reduction to stenosis of <50%) ranged from 90-98%, and the rate of major peri-procedural complications ranged from 4-10%. The rates of restenosis and/or stroke following the treatment were also favorable. This data suggests that a large, randomized controlled trial is needed to more completely evaluate the possible therapeutic advantage of this treatment.
If studies show carotid stenosis, and the patient has residual function in the affected side, carotid endarterectomy (surgical removal of the stenosis) may decrease the risk of recurrence if performed rapidly after cerebral infarction. Carotid endarterectomy is also indicated to decrease the risk of cerebral infarction for symptomatic carotid stenosis (>70 to 80% reduction in diameter).
In tissue losses that are not immediately fatal, the best course of action is to make every effort to restore impairments through physical therapy, cognitive therapy, occupational therapy, speech therapy and exercise.
The major cause of acute limb ischaemia is arterial thrombosis (85%), while embolic occlusion is responsible for 15% of cases. In rare instances, arterial aneurysm of the popliteal artery has been found to create a thrombosis or embolism resulting in ischaemia.
A study of aortic cross-clamping, a common procedure in cardiac surgery, demonstrated a strong potential benefit with further research ongoing.
70% of patients with carotid arterial dissection are between the ages of 35 and 50, with a mean age of 47 years.
Non-occlusive disease has a poor prognosis with survival rate between 40-50%.
An intriguing area of research demonstrates the ability of a reduction in body temperature to limit ischemic injuries. This procedure is called therapeutic hypothermia, and it has been shown by a number of large, high-quality randomised trials to significantly improve survival and reduce brain damage after birth asphyxia in newborn infants, almost doubling the chance of normal survival. For a full review see Hypothermia therapy for neonatal encephalopathy.
However, the therapeutic effect of hypothermia does not confine itself to metabolism and membrane stability. Another school of thought focuses on hypothermia’s ability to prevent the injuries that occur after circulation returns to the brain, or what is termed injuries. In fact an individual suffering from an ischemic insult continues suffering injuries well after circulation is restored. In rats it has been shown that neurons often die a full 24 hours after blood flow returns. Some theorize that this delayed reaction derives from the various inflammatory immune responses that occur during reperfusion. These inflammatory responses cause intracranial pressure, pressure which leads to cell injury and in some situations cell death. Hypothermia has been shown to help moderate intracranial pressure and therefore to minimize the harmful effect of a patient’s inflammatory immune responses during reperfusion. Beyond this, reperfusion also increases free radical production. Hypothermia too has been shown to minimize a patient’s production of deadly free radicals during reperfusion. Many now suspect it is because hypothermia reduces both intracranial pressure and free radical production that hypothermia improves patient outcome following a blockage of blood flow to the brain.
CT angiography would be helpful in differentiating occlusive from non-occlusive causes of mesenteric ischaemia.
The goal of treatment is to prevent the development or continuation of neurologic deficits. Treatments include observation, anticoagulation, stent implantation and carotid artery ligation.
The use of heparin following surgery is common if there are no issues with bleeding. Generally, a risk-benefit analysis is required, as all anticoagulants lead to an increased risk of bleeding. In people admitted to hospital, thrombosis is a major cause for complications and occasionally death. In the UK, for instance, the Parliamentary Health Select Committee heard in 2005 that the annual rate of death due to thrombosis was 25,000, with at least 50% of these being hospital-acquired. Hence "thromboprophylaxis" (prevention of thrombosis) is increasingly emphasized. In patients admitted for surgery, graded compression stockings are widely used, and in severe illness, prolonged immobility and in all orthopedic surgery, professional guidelines recommend low molecular weight heparin (LMWH) administration, mechanical calf compression or (if all else is contraindicated and the patient has recently suffered deep vein thrombosis) the insertion of a vena cava filter. In patients with medical rather than surgical illness, LMWH too is known to prevent thrombosis, and in the United Kingdom the Chief Medical Officer has issued guidance to the effect that preventative measures should be used in medical patients, in anticipation of formal guidelines.
The treatment for thrombosis depends on whether it is in a vein or an artery, the impact on the person, and the risk of complications from treatment.
Reactive hyperaemia or venous hyperemia is the transient increase in organ blood flow that occurs following a brief period of ischaemia. Following ischaemia there will be a shortage of oxygen and a build-up of metabolic waste.
This is commonly tested in the legs using Buerger's test.
Reactive hyperaemia often occurs as a consequence of Raynaud's phenomenon, where the vasospasm in the vasculature leads to ischaemia and necrosis of tissue and thus a subsequent increase in blood flow to remove the waste products and clear up cell debris.
CBC, ESR, blood cultures, and sinus cultures help establish and identify an infectious primary source. Lumbar puncture is necessary to rule out meningitis.
As a general rule, any diver who has breathed gas under pressure at any depth who surfaces unconscious, loses consciousness soon after surfacing, or displays neurological symptoms within about 10 minutes of surfacing should be assumed to be suffering from arterial gas embolism.
Symptoms of arterial gas embolism may be present but masked by environmental effects such as hypothermia, or pain from other obvious causes. Neurological examination is recommended when there is suspicion of lung overexpansion injury. Symptoms of decompression sickness may be very similar to, and confused with, symptoms of arterial gas embolism, however, treatment is basically the same. Discrimination between gas embolism and decompression sickness may be difficult for injured divers, and both may occur simultaneously. Dive history may eliminate decompression sickness in many cases, and the presence of symptoms of other lung overexpansion injury would raise the probability of gas embolism.
The diagnosis of cavernous sinus thrombosis is made clinically, with imaging studies to confirm the clinical impression. Proptosis, ptosis, chemosis, and cranial nerve palsy beginning in one eye and progressing to the other eye establish the diagnosis.
Cavernous sinus thrombosis is a clinical diagnosis with laboratory tests and imaging studies confirming the clinical impression.
If a patent foramen ovale (PFO) is suspected, an examination by echocardiography may be performed to diagnose the defect. In this test, very fine bubbles are introduced into a patient's vein by agitating saline in a syringe to produce the bubbles, then injecting them into an arm vein. A few seconds later, these bubbles may be clearly seen in the ultrasound image, as they travel through the patient's right atrium and ventricle. At this time, bubbles may be observed directly crossing a septal defect, or else a patent foramen ovale may be opened temporarily by asking the patient to perform the Valsalva maneuver while the bubbles are crossing through the right heart – an action which will open the foramen flap and show bubbles passing into the left heart. Such bubbles are too small to cause harm in the test, but such a diagnosis may alert the patient to possible problems which may occur from larger bubbles, formed during activities like underwater diving, where bubbles may grow during decompression. A PFO test may be recommended for divers intending to expose themselves to relatively high decompression stress in deep technical diving.
Hyperaemia, hyperæmia, or hyperemia (Greek ὑπέρ (hupér, "over") + αἷμα (haîma, “blood”)) is the increase of blood flow to different tissues in the body. It can have medical implications but is also a regulatory response, allowing change in blood supply to different tissues through vasodilation. Clinically, hyperaemia in tissues manifest as erythema (redness of the skin) because of the engorgement of vessels with oxygenated blood. Hyperaemia can also occur due to a fall in atmospheric pressure outside the body.
Renal ischemia also known as"nephric ischaemia", is the deficiency of blood in one or both kidneys or nephrons, usually due to functional constriction or actual obstruction of a blood vessel.