Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of infants suffering birth asphyxia by lowering the core body temperature is now known to be an effective therapy to reduce mortality and improve neurological outcome in survivors, and hypothermia therapy for neonatal encephalopathy begun within 6 hours of birth significantly increases the chance of normal survival in affected infants.
There has long been a debate over whether newborn infants with birth asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
IH/BA is also a causitive factor in cardiac and circulatory birth defects the sixth most expensive condition, as well as premature birth and low birth weight the second most expensive and it is one of the contributing factors to infant respiratory distress syndrome (RDS) also known as hyaline membrane disease, the most expensive medical condition to treat and the number one cause of infant mortality.
A 2008 bulletin from the World Health Organization estimates that 900,000 total infants die each year from birth asphyxia, making it a leading cause of death for newborns.
In the United States, intrauterine hypoxia and birth asphyxia was listed as the tenth leading cause of neonatal death.
There is current controversy regarding the medicolegal definitions and impacts of birth asphyxia. Plaintiff's attorneys often take the position that birth asphyxia is often preventable, and is often due to substandard care and human error. They have utilized some studies in their favor that have demonstrated that, "...although other potential causes exist, asphyxia and hypoxic-ischemic encephalopathy affect a substantial number of babies, and they are preventable causes of cerebral palsy." The American Congress of Obstetricians and Gynecologists disputes that conditions such as cerebral palsy are usually attributable to preventable causes, instead associating them with circumstances arising prior to birth and delivery.
To counter the effects of high-altitude diseases, the body must return arterial p toward normal. Acclimatization, the means by which the body adapts to higher altitudes, only partially restores p to standard levels. Hyperventilation, the body’s most common response to high-altitude conditions, increases alveolar p by raising the depth and rate of breathing. However, while p does improve with hyperventilation, it does not return to normal. Studies of miners and astronomers working at 3000 meters and above show improved alveolar p with full acclimatization, yet the p level remains equal to or even below the threshold for continuous oxygen therapy for patients with chronic obstructive pulmonary disease (COPD). In addition, there are complications involved with acclimatization. Polycythemia, in which the body increases the number of red blood cells in circulation, thickens the blood, raising the danger that the heart can’t pump it.
In high-altitude conditions, only oxygen enrichment can counteract the effects of hypoxia. By increasing the concentration of oxygen in the air, the effects of lower barometric pressure are countered and the level of arterial p is restored toward normal capacity. A small amount of supplemental oxygen reduces the equivalent altitude in climate-controlled rooms. At 4000 m, raising the oxygen concentration level by 5 percent via an oxygen concentrator and an existing ventilation system provides an altitude equivalent of 3000 m, which is much more tolerable for the increasing number of low-landers who work in high altitude. In a study of astronomers working in Chile at 5050 m, oxygen concentrators increased the level of oxygen concentration by almost 30 percent (that is, from 21 percent to 27 percent). This resulted in increased worker productivity, less fatigue, and improved sleep.
Oxygen concentrators are uniquely suited for this purpose. They require little maintenance and electricity, provide a constant source of oxygen, and eliminate the expensive, and often dangerous, task of transporting oxygen cylinders to remote areas. Offices and housing already have climate-controlled rooms, in which temperature and humidity are kept at a constant level. Oxygen can be added to this system easily and relatively cheaply.
A prescription renewal for home oxygen following hospitalization requires an assessment of the patient for ongoing hypoxemia.
High risk infants may be identified by fetal tachycardia, bradycardia or absence of fetal accelerations upon CTG in utero, at birth the infant may look cachexic and show signs of yellowish meconium staining on skin, nail and the umbillical cord, these infants usually progress onto Infant Respiratory distress syndrome within 4 hours. Investigations which can confirm the diagnosis are fetal chest x-ray, which will show hyperinflation, diaphragmatic flattening, cardiomegaly, patchy atelectasis and consolidation, and ABG samples, which will show decreased oxygen levels.
In-hospital monitors in the NICU typically measure respiratory movements, heartrate, and pulse oximetry. Central apnea can be detected quickly since it results in absence of respiratory movements. Obstructive apnea can be detected when the level of oxygen has declined in the blood and/or results in slowing of the heart rate.
Home apnea monitors (which must be distinguished from infant monitors that are designed only to allow parents to listen to the infant remotely) most frequently measure only respiratory movements and/or heart rate. They are generally used with premature infants who are otherwise ready for discharge, but who continue to require supplemental oxygen or medication for mild residual AOP. Home apnea monitoring is typically required for 6–12 weeks after discharge.
Mild and moderate cerebral hypoxia generally has no impact beyond the episode of hypoxia; on the other hand, the outcome of severe cerebral hypoxia will depend on the success of damage control, amount of brain tissue deprived of oxygen, and the speed with which oxygen was restored.
If cerebral hypoxia was localized to a specific part of the brain, brain damage will be localized to that region. A general consequence may be epilepsy. The long-term effects will depend on the purpose of that portion of the brain. Damage to the Broca's area and the Wernicke's area of the brain (left side) typically causes problems with speech and language. Damage to the right side of the brain may interfere with the ability to express emotions or interpret what one sees. Damage on either side can cause paralysis of the opposite side of the body.
The effects of certain kinds of severe generalized hypoxias may take time to develop. For example, the long-term effects of serious carbon monoxide poisoning usually may take several weeks to appear. Recent research suggests this may be due to an autoimmune response caused by carbon monoxide-induced changes in the myelin sheath surrounding neurons.
If hypoxia results in coma, the length of unconsciousness is often indicative of long-term damage. In some cases coma can give the brain an opportunity to heal and regenerate, but, in general, the longer a coma, the greater the likelihood that the person will remain in a vegetative state until death. Even if the patient wakes up, brain damage is likely to be significant enough to prevent a return to normal functioning.
Long-term comas can have a significant impact on a patient's families. Families of coma victims often have idealized images of the outcome based on Hollywood movie depictions of coma. Adjusting to the realities of ventilators, feeding tubes, bedsores, and muscle wasting may be difficult. Treatment decision often involve complex ethical choices and can strain family dynamics.
There have been many assessments of tests aimed at predicting pre-eclampsia, though no single biomarker is likely to be sufficiently predictive of the disorder. Predictive tests that have been assessed include those related to placental perfusion, vascular resistance, kidney dysfunction, endothelial dysfunction, and oxidative stress. Examples of notable tests include:
- Doppler ultrasonography of the uterine arteries to investigate for signs of inadequate placental perfusion. This test has a high negative predictive value among those individuals with a history of prior pre-eclampsia.
- Elevations in serum uric acid (hyperuricemia) is used by some to "define" pre-eclampsia, though it has been found to be a poor predictor of the disorder. Elevated levels in the blood (hyperuricemia) are likely due to reduced uric acid clearance secondary to impaired kidney function.
- Angiogenic proteins such as vascular endothelial growth factor (VEGF) and placental growth factor (PIGF) and anti-angiogenic proteins such as soluble fms-like tyrosine kinase-1 (sFlt-1) have shown promise for potential clinical use in diagnosing pre-eclampsia, though evidence is sufficient to recommend a clinical use for these markers.
- Recent studies have shown that looking for podocytes (specialized cells of the kidney) in the urine has the potential to aid in the prediction of preeclampsia. Studies have demonstrated that finding podocytes in the urine may serve as an early marker of and diagnostic test for preeclampsia.
The mortality rate of meconium-stained infants is considerably higher than that of non-stained infants; meconium aspiration used to account for a significant proportion of neonatal deaths. Residual lung problems are rare but include symptomatic cough, wheezing, and persistent hyperinflation for up to five to ten years. The ultimate prognosis depends on the extent of CNS injury from asphyxia and the presence of associated problems such as pulmonary hypertension. Fifty percent of newborns affected by meconium aspiration would die fifteen years ago; however, today the percent has dropped to about twenty.
Pre-eclampsia can mimic and be confused with many other diseases, including chronic hypertension, chronic renal disease, primary seizure disorders, gallbladder and pancreatic disease, immune or thrombotic thrombocytopenic purpura, antiphospholipid syndrome and hemolytic-uremic syndrome. It must be considered a possibility in any pregnant woman beyond 20 weeks of gestation. It is particularly difficult to diagnose when preexisting disease such as hypertension is present. Women with acute fatty liver of pregnancy may also present with elevated blood pressure and protein in the urine, but differ by the extent of liver damage. Other disorders that can cause high blood pressure include thyrotoxicosis, pheochromocytoma, and drug misuse.
For newborn infants starved of oxygen during birth there is now evidence that hypothermia therapy for neonatal encephalopathy applied within 6 hours of cerebral hypoxia effectively improves survival and neurological outcome. In adults, however, the evidence is less convincing and the first goal of treatment is to restore oxygen to the brain. The method of restoration depends on the cause of the hypoxia. For mild-to-moderate cases of hypoxia, removal of the cause of hypoxia may be sufficient. Inhaled oxygen may also be provided. In severe cases treatment may also involve life support and damage control measures.
A deep coma will interfere with body's breathing reflexes even after the initial cause of hypoxia has been dealt with; mechanical ventilation may be required. Additionally, severe cerebral hypoxia causes an elevated heart rate, and in extreme cases the heart may tire and stop pumping. CPR, defibrilation, epinephrine, and atropine may all be tried in an effort to get the heart to resume pumping. Severe cerebral hypoxia can also cause seizures, which put the patient at risk of self-injury, and various anti-convulsant drugs may need to be administered before treatment.
There has long been a debate over whether newborn infants with cerebral hypoxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
Brain damage can occur both during and after oxygen deprivation. During oxygen deprivation, cells die due to an increasing acidity in the brain tissue (acidosis). Additionally, during the period of oxygen deprivation, materials that can easily create free radicals build up. When oxygen enters the tissue these materials interact with oxygen to create high levels of oxidants. Oxidants interfere with the normal brain chemistry and cause further damage (this is known as "reperfusion injury").
Techniques for preventing damage to brain cells are an area of ongoing research. Hypothermia therapy for neonatal encephalopathy is the only evidence-supported therapy, but antioxidant drugs, control of blood glucose levels, and hemodilution (thinning of the blood) coupled with drug-induced hypertension are some treatment techniques currently under investigation. Hyperbaric oxygen therapy is being evaluated with the reduction in total and myocardial creatine phosphokinase levels showing a possible reduction in the overall systemic inflammatory process.
In severe cases it is extremely important to act quickly. Brain cells are very sensitive to reduced oxygen levels. Once deprived of oxygen they will begin to die off within five minutes.
Since AOP is fundamentally a problem of the immaturity of the physiological systems of the premature infant, it is a self-limited condition that will resolve when these systems mature. It is unusual for an infant to continue to have significant problems with AOP beyond 42 weeks post-conceptual age.
Infants who have had AOP are at increased risk of recurrence of apnea in response to exposure to anesthetic agents, at least until around 52 weeks post-conceptual age.
There is no evidence that a history of AOP places an infant at increased risk for SIDS. However, any premature infant (regardless of whether they have had AOP) is at increased risk of SIDS. It is important that other factors related to SIDS risk be avoided (exposure to smoking, prone sleeping, excess bedding materials, etc.)
When the pulmonary capillary pressure remains elevated chronically (for at least 2 weeks), the lungs become even more resistant to pulmonary edema because the lymph vessels expand greatly, increasing their capability of carrying fluid away from the interstitial spaces perhaps as much as 10-fold. Therefore, in patients with chronic mitral stenosis, pulmonary capillary pressures of 40 to 45 mm Hg have been measured without the development of lethal pulmonary edema.[Guytun and Hall physiology]
Hypoxia exists when there is a reduced amount of oxygen in the tissues of the body. Hypoxemia refers to a reduction in PO2 below the normal range, regardless of whether gas exchange is impaired in the lung, CaO2 is adequate, or tissue hypoxia exists. There are several potential physiologic mechanisms for hypoxemia, but in patients with COPD the predominant one is V/Q mismatching, with or without alveolar hypoventilation, as indicated by PaCO2. Hypoxemia caused by V/Q mismatching as seen in COPD is relatively easy to correct, so that only comparatively small amounts of supplemental oxygen (less than 3 L/min for the majority of patients) are required for LTOT. Although hypoxemia normally stimulates ventilation and produces dyspnea, these phenomena and the other symptoms and signs of hypoxia are sufficiently variable in patients with COPD as to be of limited value in patient assessment. Chronic alveolar hypoxia is the main factor leading to development of cor pulmonale—right ventricular hypertrophy with or without overt right ventricular failure—in patients with COPD. Pulmonary hypertension adversely affects survival in COPD, to an extent that parallels the degree to which resting mean pulmonary artery pressure is elevated. Although the severity of airflow obstruction as measured by FEV1 is the best correlate with overall prognosis in patients with COPD, chronic hypoxemia increases mortality and morbidity for any severity of disease. Large-scale studies of LTOT in patients with COPD have demonstrated a dose-response relationship between daily hours of oxygen use and survival. There is reason to believe that continuous, 24-hours-per-day oxygen use in appropriately selected patients would produce a survival benefit even greater than that shown in the NOTT and MRC studies.
Generally, high-altitude pulmonary edema (HAPE) or AMS precede HACE. In patients with AMS, the onset of HACE is usually indicated by vomiting, headache that does not respond to non-steroidal anti-inflammatory drugs, hallucinations, and stupor. In some situations, however, AMS progresses to HACE without these symptoms. HACE must be distinguished from conditions with similar symptoms, including stroke, intoxication, psychosis, diabetic symptoms, meningitis, or ingestion of toxic substances. It should be the first diagnosis ruled out when sickness occurs while ascending to a high altitude.
HACE is generally preventable by ascending gradually with frequent rest days while climbing or trekking. Not ascending more than daily and not sleeping at a greater height than more than the previous night is recommended. The risk of developing HACE is diminished if acetazolamide or dexamethasone are administered. Generally, the use of acetazolamide is preferred, but dexamethasone can be used for prevention if there are side effects or contraindications. Some individuals are more susceptible to HACE than others, and physical fitness is not preventative. Age and sex do not by themselves affect vulnerability to HACE.
Bed rest has not been found to improve outcomes and therefore is not typically recommended.
Mothers whose fetus is diagnosed with intrauterine growth restriction by ultrasound can use management strategies based on monitoring and delivery methods. One of these monitoring techniques is an umbilical artery Doppler. This method has been shown to decrease risk of morbidity and mortality before and after parturition among IUGR patients.
Time of delivery is also a management strategy and is based on parameters collected from the umbilical artery doppler. Some of these include: pulsatility index, resistance index, and end-diastolic velocities, which are measurements of the fetal circulation.
Fetuses with polyhydramnios are at risk for a number of other problems including cord prolapse, placental abruption, premature birth and perinatal death. At delivery the baby should be checked for congenital abnormalities.
Patients with HACE should be brought to lower altitudes and provided supplemental oxygen, and rapid descent is sometimes needed to prevent mortality. Early recognition is important because as the condition progresses patients are unable to descend without assistance. Dexamethasone should also be administered, although it fails to ameliorate some symptoms that can be cured by descending to a lower altitude. It can also mask symptoms, and they sometimes resume upon discontinuation. Dexamethasone's prevention of angiogenesis may explain why it treats HACE well. Three studies that examined how mice and rat brains react to hypoxia gave some credence to this idea.
If available, supplemental oxygen can be used as an adjunctive therapy, or when descent is not possible. FiO2 should be titrated to maintain arterial oxygen saturation of greater than 90%, bearing in mind that oxygen supply is often limited in high altitude clinics/environments.
In addition to oxygen therapy, a portable hyperbaric chamber (Gamow bag) can by used as a temporary measure in the treatment of HACE. These devices simulate a decrease in altitude of up to 7000 ft, but they are resource intensive and symptoms will often return after discontinuation of the device. Portable hyperbaric chambers should not be used in place of descent or evacuation to definitive care.
Diuretics may be helpful, but pose risks outside of a hospital environment. Sildenafil and tadalafil may help HACE, but there is little evidence of their efficacy. Theophylline is also theorized to help the condition.
Although AMS is not life-threatening, HACE is usually fatal within 24 hours if untreated. Without treatment, the patient will enter a coma and then die. In some cases, patients have died within a few hours, and a few have survived for two days. Descriptions of fatal cases often involve climbers who continue ascending while suffering from the condition's symptoms.
Recovery varies between days and weeks, but most recover in a few days. After the condition is successfully treated, it is possible for climbers to reascend. Dexamethesone should be discontinued, but continual acetazolamide is recommended. In one study, it took patients between one week and one month to display a normal CT scan after suffering from HACE.
"Hypoxemia" refers to low oxygen in the blood, and the more general term "hypoxia" is an abnormally low oxygen content in any tissue or organ, or the body as a whole. Hypoxemia can cause hypoxia (hypoxemic hypoxia), but hypoxia can also occur via other mechanisms, such as anemia.
Hypoxemia is usually defined in terms of reduced partial pressure of oxygen (mm Hg) in arterial blood, but also in terms of reduced content of oxygen (ml oxygen per dl blood) or percentage saturation of hemoglobin (the oxygen binding protein within red blood cells) with oxygen, which is either found singly or in combination.
While there is general agreement that an arterial blood gas measurement which shows that the partial pressure of oxygen is lower than normal constitutes hypoxemia, there is less agreement concerning whether the oxygen content of blood is relevant in determining hypoxemia. This definition would include oxygen carried by hemoglobin. The oxygen content of blood is thus sometimes viewed as a measure of tissue delivery rather than hypoxemia.
Just as extreme hypoxia can be called anoxia, extreme hypoxemia can be called anoxemia.
If the alveolar ventilation is insufficient, there will not be enough oxygen delivered to the alveoli for the body's use. This can cause hypoxemia even if the lungs are normal, as the cause is in the brainstem's control of ventilation or in the body's inability to breathe effectively.
IUGR affects 3-10% of pregnancies. 20% of stillborn infants have IUGR. Perinatal mortality rates are 4-8 times higher for infants with IUGR, and morbidity is present in 50% of surviving infants.
According to the theory of thrifty phenotype, intrauterine growth restriction triggers epigenetic responses in the fetus that are otherwise activated in times of chronic food shortage. If the offspring actually develops in an environment rich in food it may be more prone to metabolic disorders, such as obesity and type II diabetes.
This has a good prognosis if it is reversible. Causes include polycythemia and hyperfibrinogenemia.
While there are no standard criteria for the diagnosis of Grinker's myelinopathy, neuroimaging can be an important diagnostic tool in ruling out other diagnoses. Magnetic resonance imaging (MRI) or computed tomography (CT) scans can be used to demonstrate a decrease in white matter density in the patient’s cerebral hemispheres, with the typical exception of overlying cortices. Unexplained, uniform demyelination of white matter can indicate acute onset Grinker's myelinopathy.
There are several pathologic conditions that can predispose a pregnancy to polyhydramnios. These include a maternal history of diabetes mellitus, Rh incompatibility between the fetus and mother, intrauterine infection, and multiple pregnancies.
During the pregnancy, certain clinical signs may suggest polyhydramnios. In the mother, the physician may observe increased abdominal size out of proportion for her weight gain and gestation age, uterine size that outpaces gestational age, shiny skin with stria (seen mostly in severe polyhydramnios), dyspnea, and chest heaviness. When examining the fetus, faint fetal heart sounds are also an important clinical sign of this condition.
Hypoxic hypoxia is a result of insufficient oxygen available to the lungs. A blocked airway, a drowning or a reduction in partial pressure (high altitude above 10,000 feet) are examples of how lungs can be deprived of oxygen. Some medical examples are abnormal pulmonary function or respiratory obstruction. Hypoxic hypoxia is seen in patients suffering from chronic obstructive pulmonary diseases (COPD), neuromuscular diseases or interstitial lung disease.