Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Gastroscopy, or endoscopic evaluation of the stomach, is useful in chronic cases of colic suspected to be caused by gastric ulcers, gastric impactions, and gastric masses. A 3-meter scope is required to visualize the stomach of most horses, and the horse must be fasted prior to scoping.
In a cecal volvulus, the cecum may be returned to a normal position and sutured in place, a procedure known as cecopexy. If identified early, before presumed intestinal wall ischemia has resulted in tissue breakdown and necrosis, the cecal volvulus can be detorsed laparoscopically.
Laparoscopy involves inserting a telescoping camera approximately 1 cm in diameter into the horse's abdomen, through a small incision, to visualize the gastrointestinal tract. It may be performed standing or under general anesthesia, and is less invasive than an exploratory celiotomy (abdominal exploratory surgery).
On chest radiography, a retrocardiac, gas-filled viscus may be seen in cases of intrathoracic stomach, which confirms the diagnosis. Plain abdominal radiography reveals a massively distended viscus in the upper abdomen. In organoaxial volvulus, plain films may show a horizontally oriented stomach with a single air-fluid level and a paucity of distal gas. In mesenteroaxial volvulus, plain abdominal radiographic findings include a spherical stomach on supine images and 2 air-fluid levels on erect images, with the antrum positioned superior to the fundus.
- Upper GI contrast studies:
The diagnosis of gastric volvulus is usually based on barium studies; however, some authors recommend computed tomography (CT) scanning as the imaging modality of choice.
Upper gastrointestinal (GI) contrast radiographic studies (using barium or Gastrografin) are sensitive and specific if performed with the stomach in the "twisted" state and may show an upside-down stomach. Contrast studies have been reported to have a diagnostic yield in 81–84% of patients.
Often performed for an evaluation of acute abdominal pain, a computed tomography (CT) scan can offer immediate diagnosis by showing two bubbles with a transition line. Proponents of CT scanning in the diagnosis of gastric volvulus report several benefits, including:
1. the ability to rapidly diagnose the condition based on a few coronal reconstructed images,
2. the ability to detect the presence or absence of gastric pneumatosis and free air,
3. the detection of predisposing factors (i.e., diaphragmatic or hiatal hernias), and
4. the exclusion of other abdominal pathology.
- Endoscopy:
Upper gastrointestinal (GI) endoscopy may be helpful in the diagnosis of gastric volvulus. When this procedure reveals distortion of the gastric anatomy with difficulty intubating the stomach or pylorus, it can be highly suggestive of gastric volvulus. In the late stage of gastric volvulus, strangulation of the blood supply can result in progressive ischemic ulceration or mucosal fissuring.
The nonoperative mortality rate for gastric volvulus is reportedly as high as 80%. Historically, mortality rates of 30–50% have been reported for acute gastric volvulus, with the major cause of death being strangulation, which can lead to necrosis and perforation. With advances in diagnosis and management, the mortality rate from acute gastric volvulus is 15–20% and that for chronic gastric volvulus is 0–13%.
Treatment for sigmoid volvulus may include sigmoidoscopy. If the mucosa of the sigmoid looks normal and pink, place a rectal tube for decompression, correct any fluid, electrolyte, cardiac, renal or pulmonary abnormalities and then take the person to the operating room for repair. If surgery is not performed, there is a high rate of recurrence.
For people with signs of sepsis or an abdominal catastrophe, immediate surgery and resection is advised.
The main diagnostic tools are blood tests, X-rays of the abdomen, CT scanning, and/or ultrasound. If a mass is identified, biopsy may determine the nature of the mass.
Radiological signs of bowel obstruction include bowel distension and the presence of multiple (more than six) gas-fluid levels on supine and erect abdominal radiographs.
Contrast enema or small bowel series or CT scan can be used to define the level of obstruction, whether the obstruction is partial or complete, and to help define the cause of the obstruction.
According to a meta-analysis of prospective studies by the Cochrane Collaboration, the appearance of water-soluble contrast in the cecum on an abdominal radiograph within 24 hours of oral administration predicts resolution of an adhesive small bowel obstruction with a pooled sensitivity of 97% and specificity of 96%.
Colonoscopy, small bowel investigation with ingested camera or push endoscopy, and laparoscopy are other diagnostic options.
On x-rays, gas may be visible in the abdominal cavity. Gas is easily visualized on x-ray while the patient is in an upright position. The perforation can often be visualised using computed tomography. White blood cells are often elevated.
Fetal and neonatal bowel obstructions are often caused by an intestinal atresia, where there is a narrowing or absence of a part of the intestine. These atresias are often discovered before birth via an ultrasound, and treated with using laparotomy after birth. If the area affected is small, then the surgeon may be able to remove the damaged portion and join the intestine back together. In instances where the narrowing is longer, or the area is damaged and cannot be used for a period of time, a temporary stoma may be placed.
A diagnosis of gastric dilatation-volvulus is made by several factors. The breed and history will often give a significant suspicion of gastric dilatation-volvulus, and the physical exam will often reveal the telltale sign of a distended abdomen with abdominal tympany. Shock is diagnosed by the presence of pale mucous membranes with poor capillary refill, increased heart rate, and poor pulse quality. Radiographs (x-rays), usually taken after decompression of the stomach if the dog is unstable, will show a stomach distended with gas. The pylorus, which normally is ventral and to the right of the body of the stomach, will be cranial to the body of the stomach and left of the midline, often separated on the x-ray by soft tissue and giving the appearance of a separate gas filled pocket (double bubble sign).
Stable patients presenting to A&E (accident and emergency department) or ER (emergency room) with severe abdominal pain will almost always have an abdominal x-ray and/or a CT scan. These tests can provide a differential diagnosis between simple and complex pathologies. However, in the unstable patient, fluid resuscitation and a FAST-ultrasound are done first, and if the latter is positive for free fluid, straight to surgery. They may also provide evidence to the doctor whether surgical intervention is necessary.
Patients will also most likely receive a complete blood count (or full blood count in the U.K.), looking for characteristic findings such as neutrophilia in appendicitis.
Traditionally, the use of opiates or other painkillers in patients with an acute abdomen has been discouraged before the clinical examination, because these would alter the examination. However, the scientific literature does not reveal any negative results from these alterations.
It is important to note that both barium enema and colonoscopy are contraindicated during acute episodes of diverticulitis, as the barium may leak out into the abdominal cavity, and colonoscopy can cause perforations of the bowel wall.
Surgical intervention is nearly always required in form of exploratory laparotomy and closure of perforation with peritoneal wash. Occasionally they may be managed laparoscopically.
Conservative treatment including intravenous fluids, antibiotics, nasogastric aspiration and bowel rest is indicated only if the person is nontoxic and clinically stable.
Immediate treatment is the most important factor in a favorable prognosis. A delay in treatment greater than six hours or the presence of peritonitis, sepsis, hypotension, or disseminated intravascular coagulation are negative prognostic indicators.
Historically, GDV has held a guarded prognosis. Although "early studies showed mortality rates between 33% and 68% for dogs with GDV," studies from 2007 to 2012 "reported mortality rates between 10% and 26.8%". Mortality rates approach 10% to 40% even with treatment. A study determined that with prompt treatment and good preoperative stabilization of the patient, mortality is significantly lessened to 10% overall (in a referral setting). Negative prognostic indicators following surgical intervention include postoperative cardiac arrhythmia, splenectomy, or splenectomy with partial gastric resection. Interestingly, a longer time from presentation to surgery was associated with a lower mortality, presumably because these dogs had received more complete preoperative fluid resuscitation and were thus better cardiovascularly stabilized prior to the procedure.
A high-fiber diet and fiber supplements are advisable to prevent constipation. The American Dietetic Association recommends 20–35 grams each day. Wheat bran has been shown to reduce intra colonic pressure.
The US National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) says foods such as nuts, popcorn hulls, sunflower seeds, pumpkin seeds, caraway seeds, and sesame seeds have traditionally been labeled as problem foods for people with this condition; however, no scientific data exists to prove this hypothesis. The seeds in tomatoes, zucchini, cucumbers, strawberries, raspberries, and poppy seeds, are not considered harmful by the NIDDK.
One study found that nuts and popcorn do not contribute positively or negatively to patients with diverticulosis or diverticular complications.
With acutely ill patients, consider emergency surgery laparotomy if there is a high index of suspicion.
Plain radiography may demonstrate signs of duodenal obstruction with dilatation of the proximal duodenum and stomach but it is often non-specific. Upper gastrointestinal series is the modality of choice for the evaluation of malrotation as it will show an abnormal position of the duodeno-jejunal flexure (ligament of Treitz). In cases of malrotation complicated with volvulus, it demonstrates a corkscrew appearance of the distal duodenum and jejunum. In cases of obstructing Ladd bands, it will reveal a duodenal obstruction.
In equivocal cases, contrast enema, may be helpful by showing the caecum at an abnormal location.
It is usually discovered near birth, but in some cases is not discovered until adulthood. In adults, the "whirlpool sign" of the superior mesenteric artery can be useful in identifying malrotation.
Treatment is surgical, potentially with a laparoscopic resection. In patients with bleeding, strangulation of bowel, bowel perforation or bowel obstruction, treatment involves surgical resection of both the Meckel's diverticulum itself along with the adjacent bowel segment, and this procedure is called a "small bowel resection". In patients without any of the aforementioned complications, treatment involves surgical resection of the Meckel's diverticulum only, and this procedure is called a simple diverticulectomy.
With regards to asymptomatic Meckel's diverticulum, some recommend that a search for Meckel's diverticulum should be conducted in every case of appendectomy/laparotomy done for acute abdomen, and if found, Meckel's diverticulectomy or resection should be performed to avoid secondary complications arising from it.
Attempts must be made to determine whether there is a secondary cause amenable to treatment.
Primary (idiopathic) intestinal pseudo-obstruction is diagnosed based on motility studies, x-rays and gastric emptying studies.
With early intervention, morbidity and mortality of cases of intestinal obstruction is low. The outcome is in part dependent upon congenital comorbidities and delays in diagnosis and management.
Neonatal bowel obstruction is grouped into two general categories: high, or proximal, obstruction and low, or distal obstruction, both of which are suspected by failure to pass meconium at birth. High obstruction can be suspected based on the double bubble sign. Cases without distal gas are usually related to duodenal atresia, while high obstruction with distal gas need an upper gastrointestinal series because of the need to distinguish duodenal web, duodenal stenosis and annular pancreas from midgut volvulus, the latter being a surgical emergency. Confirmation is ultimately by surgical intervention.
A low obstruction is suspected on plain film, but needs follow up with a gastrografin enema, which itself can be therapeutic. The differential for low obstruction is ileal atresia, meconium ileus, meconium plug syndrome and Hirschsprung disease. In cases of meconium ileus or ileal atresia, the colon distal to the obstruction is hypoplastic, usually less than 1 cm in caliber, as development of normal colonic caliber "in utero" is due to the passage of meconium, which does not occur in either of these conditions. When diffusely small caliber is seen, it is referred to as microcolon. Radiographs in meconium ileus classically demonstrate a bubbly appearance in the right lower quadrant due to a combination of ingested air and meconium. If, on contrast enema, reflux into the dilated distal small bowel loops can be achieved, the study is both diagnostic and therapeutic, as the ionic contrast medium can dissolve the meconium to allow passage of enteric content into the unused colon.
If contrast cannot be refluxed into the distal small bowel, ileal atresia remains a diagnostic possibility. Jejunal and ileal atresia are caused by "in utero" vascular insults, leading to poor recanalization of distal small bowel segments, a condition in which surgical resection and reanastamosis are mandatory. Hirschsprung disease is due to an arrest in neural cell ganglia, leading to absent innervation of a segment distal bowel, and appears as a massively dilated segment of distal bowel on contrast enema. Surgical resection is necessary for this condition as well. Imperforate anus also requires surgical management, with the diagnosis made by inability to pass the rectal tube through the anal sphincter. Supportive intravenous hydration, gastric decompression, and ventilatory support may be needed due to poor neonatal nutrition resulting from dysfunctional bowel absorption.
A technetium-99m (99mTc) pertechnetate scan, also called Meckel scan, is the investigation of choice to diagnose Meckel's diverticula in children. This scan detects gastric mucosa; since approximately 50% of symptomatic Meckel's diverticula have ectopic gastric or pancreatic cells contained within them, this is displayed as a spot on the scan distant from the stomach itself. In children, this scan is highly accurate and noninvasive, with 95% specificity and 85% sensitivity; however, in adults the test is only 9% specific and 62% sensitive.
Patients with these misplaced gastric cells may experience peptic ulcers as a consequence. Therefore, other tests such as colonoscopy and screenings for bleeding disorders should be performed, and angiography can assist in determining the location and severity of bleeding. Colonoscopy might be helpful to rule out other sources of bleeding but it is not used as an identification tool. Angiography might identify brisk bleeding in patients with Meckel's diverticulum.
Ultrasonography could demonstrate omphaloenteric duct remnants or cysts. Computed tomography (CT scan) might be a useful tool to demonstrate a blind ended and inflamed structure in the mid-abdominal cavity, which is not an appendix.
In asymptomatic patients, Meckel's diverticulum is often diagnosed as an incidental finding during laparoscopy or laparotomy.
It is important to differentiate DPI from small intestinal obstruction, since obstruction may require surgical intervention, but this can at times be difficult. Horses suffering from DPI usually have a higher protein concentration in their peritoneal fluid compared to horses with small intestinal obstruction, often without a concurrent increase in nucleated cell count. They usually have some relief and decrease in pain after gastric decompression, while horses with an obstruction often still act colicky after nasogastric intubation. Distention of the small intestine may be less than what is felt on rectal examination of horses with obstruction, especially after gastric decompression. Horses with DPJ usually produce larger volumes of reflux (usually greater than 48 liters in the first 24 hours) than those with obstruction, and are often pyretic (temperatures of 101.5–102.5) and have alterations in white blood cell levels, while those with obstructions usually have a normal or lower than normal temperature and normal leukocyte levels.
Ultrasound can also be helpful to distinguish DPJ from obstruction. Horses with small intestinal obstruction will usually have an intestinal diameter of −10 cm with a wall thickness of 3–5mm. Horses with proximal enteritis usually have an intestinal diameter that is narrower, but wall thickness is often greater than 6mm, containing a hyperechoic or anechoic fluid, with normal, increased, or decreased peristalsis. However, obstructions that have been present for some time may present with thickened walls and distention of the intestine.
DPJ can only be definitively diagnosed during surgery or at necropsy, when its gross appearance of the small intestine may be evaluated.
Ileus is a cause of colic in horses due to functional obstruction of the intestines. It most commonly seen in horses postoperatively, especially following colic surgery. Horses experiencing ileus are at risk for gastric rupture due to rapid reflux build-up, and require intense medical management with frequent nasogastric intubation. Ileus may increase adhesion formation, because intestinal segments have more prolonged contact and intestinal distention causes serosal injury and ischemia. It is usually treated with aggressive fluid support, prokinetics, and anti-inflammatories.
Traditionally, nothing by mouth was considered to be mandatory in all cases, but gentle feeding by enteral feeding tube may help to restore motility by triggering the gut's normal feedback signals, so this is the recommended management initially. When the patient has severe, persistent signs that motility is completely disrupted, nasogastric suction and parenteral nutrition may be required until passage is restored. In such cases, continuing aggressive enteral feeding causes a risk of perforating the gut.
Several options are available in the case of paralytic ileus. Most treatment is supportive. If caused by medication, the offending agent is discontinued or reduced. Bowel movements may be stimulated by prescribing lactulose, erythromycin or, in severe cases that are thought to have a neurological component (such as Ogilvie's syndrome), neostigmine. There is also evidence from a systematic review of randomized controlled trials that chewing gum, as a form of 'sham feeding', may stimulate gastrointestinal motility in the post-operative period and reduce the duration of postoperative ileus.
If possible the underlying cause is corrected (e.g. replace electrolytes).
There is no cure for short bowel syndrome except transplant. In newborn infants, the 4-year survival rate on parenteral nutrition is approximately 70%. In newborn infants with less than 10% of expected intestinal length, 5 year survival is approximately 20%. Some studies suggest that much of the mortality is due to a complication of the total parenteral nutrition (TPN), especially chronic liver disease. Much hope is vested in Omegaven, a type of lipid TPN feed, in which recent case reports suggest the risk of liver disease is much lower.
Although promising, small intestine transplant has a mixed success rate, with postoperative mortality rate of up to 30%. One-year and 4-year survival rate are 90% and 60%, respectively.
Intestinal decompression by tube placement in a small stoma can also be used to reduce distension and pressure within the gut. The stoma may be a gastrostomy, jejunostomy, ileostomy or cecostomy, and may also be used to feed, in the case of gastrostomy and jejunostomy, or flush the intestines.
Colostomy or ileostomy can bypass affected parts if they are distal to (come after) the stoma. For instance, if only the large colon is affected, an ileostomy may be helpful. Either of these ostomies are typically placed at or a few centimeters below the patients belly button per doctor recommendation based on the affected area of the intestines as well as concerns for patient comfort and future physical growth for children.
The total removal of the colon, called a colectomy or resection of affected parts of the colon may be needed if part of the gut dies (for instance toxic megacolon), or if there is a localised area of dysmotility.
Gastric and colonic pacemakers have been tried. These are strips placed along the colon or stomach which create an electric discharge intended to cause the muscle to contract in a controlled manner.
A potential solution, albeit radical, is a multi-organ transplant. The operation involved transplanting the pancreas, stomach, duodenum, small intestine, and liver, and was performed by Doctor Kareem Abu-Elmagd on Gretchen Miller, the subject of the Discovery Channel program "Surgery Saved My Life".