Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Fetal and neonatal intestinal atresia are treated using laparotomy after birth. If the area affected is small, the surgeon may be able to remove the damaged portion and join the intestine back together. In instances where the narrowing is longer, or the area is damaged and cannot be used for period of time, a temporary stoma may be placed.
In a cecal volvulus, the cecum may be returned to a normal position and sutured in place, a procedure known as cecopexy. If identified early, before presumed intestinal wall ischemia has resulted in tissue breakdown and necrosis, the cecal volvulus can be detorsed laparoscopically.
Treatment for sigmoid volvulus may include sigmoidoscopy. If the mucosa of the sigmoid looks normal and pink, place a rectal tube for decompression, correct any fluid, electrolyte, cardiac, renal or pulmonary abnormalities and then take the person to the operating room for repair. If surgery is not performed, there is a high rate of recurrence.
For people with signs of sepsis or an abdominal catastrophe, immediate surgery and resection is advised.
Intestinal atresias are often discovered before birth: either during a routine sonogram which shows a dilated intestinal segment due to the blockage, or by the development of polyhydramnios (the buildup of too much amniotic fluid in the uterus). These abnormalities are indications that the fetus may have a bowel obstruction which a more detailed ultrasound study can confirm.
Some fetuses with bowel obstruction have abnormal chromosomes. An amniocentesis is recommended because it can determine not only the sex of the baby, but whether or not there is a problem with the chromosomes.
Treatment is surgical, potentially with a laparoscopic resection. In patients with bleeding, strangulation of bowel, bowel perforation or bowel obstruction, treatment involves surgical resection of both the Meckel's diverticulum itself along with the adjacent bowel segment, and this procedure is called a "small bowel resection". In patients without any of the aforementioned complications, treatment involves surgical resection of the Meckel's diverticulum only, and this procedure is called a simple diverticulectomy.
With regards to asymptomatic Meckel's diverticulum, some recommend that a search for Meckel's diverticulum should be conducted in every case of appendectomy/laparotomy done for acute abdomen, and if found, Meckel's diverticulectomy or resection should be performed to avoid secondary complications arising from it.
A technetium-99m (99mTc) pertechnetate scan, also called Meckel scan, is the investigation of choice to diagnose Meckel's diverticula in children. This scan detects gastric mucosa; since approximately 50% of symptomatic Meckel's diverticula have ectopic gastric or pancreatic cells contained within them, this is displayed as a spot on the scan distant from the stomach itself. In children, this scan is highly accurate and noninvasive, with 95% specificity and 85% sensitivity; however, in adults the test is only 9% specific and 62% sensitive.
Patients with these misplaced gastric cells may experience peptic ulcers as a consequence. Therefore, other tests such as colonoscopy and screenings for bleeding disorders should be performed, and angiography can assist in determining the location and severity of bleeding. Colonoscopy might be helpful to rule out other sources of bleeding but it is not used as an identification tool. Angiography might identify brisk bleeding in patients with Meckel's diverticulum.
Ultrasonography could demonstrate omphaloenteric duct remnants or cysts. Computed tomography (CT scan) might be a useful tool to demonstrate a blind ended and inflamed structure in the mid-abdominal cavity, which is not an appendix.
In asymptomatic patients, Meckel's diverticulum is often diagnosed as an incidental finding during laparoscopy or laparotomy.
A complete history and physical examination can be suggestive, especially if a palpable mass in the right lower quadrant of the abdomen is present (though this can be present in the absence of DIOS). Ultrasound and computed tomography (CT) imaging of the abdomen can confirm the diagnosis by demonstrating dilated loops of intestine with material in the intestinal lumen with bubbles. Air-fluid levels may be seen in those affected by DIOS.
Additional diagnoses which may present with similar symptoms to DIOS include severe constipation, appendicitis, and intussusception.
Attempts must be made to determine whether there is a secondary cause amenable to treatment.
Primary (idiopathic) intestinal pseudo-obstruction is diagnosed based on motility studies, x-rays and gastric emptying studies.
Gastroscopy, or endoscopic evaluation of the stomach, is useful in chronic cases of colic suspected to be caused by gastric ulcers, gastric impactions, and gastric masses. A 3-meter scope is required to visualize the stomach of most horses, and the horse must be fasted prior to scoping.
Laparoscopy involves inserting a telescoping camera approximately 1 cm in diameter into the horse's abdomen, through a small incision, to visualize the gastrointestinal tract. It may be performed standing or under general anesthesia, and is less invasive than an exploratory celiotomy (abdominal exploratory surgery).
In some communities mothers routinely push the small bulge back in and tape a coin over the palpable hernia hole until closure occurs. This practice is not medically recommended as there is a small risk of trapping a loop of bowel under part of the coin resulting in a small area of ischemic bowel. This "fix" does not help and germs may accumulate under the tape, causing infection. The use of bandages or other articles to continuously reduce the hernia is not evidence-based.
An umbilical hernia can be fixed in two different ways. The surgeon can opt to stitch the walls of the abdominal or he/she can place mesh over the opening and stitch it to the abdominal walls. The latter is of a stronger hold and is commonly used for larger defects in the abdominal wall. Most surgeons will not repair the hernia until 5–6 years after the baby is born. Most umbilical hernias in infants and children close spontaneously and rarely have complications of gastrointestinal-content incarcerations.
How far the projection of the swelling extends from the surface of the abdomen (the belly) varies from child to child. In some, it may be just a small protrusion; in others it may be a large rounded swelling that bulges out when the baby cries. It may hardly be visible when the child is quiet and or sleeping.
Normally, the abdominal muscles converge and fuse at the umbilicus during the formation stage, however, in some cases, there remains a gap where the muscles do not close and through this gap the inner intestines come up and bulge under the skin, giving rise to an umbilical hernia. The bulge and its contents can easily be pushed back and reduced into the abdominal cavity.
In contrast to an inguinal hernia, the complication incidence is very low, and in addition, the gap in the muscles usually closes with time and the hernia disappears on its own. The treatment of this condition is essentially conservative: observation allowing the child to grow up and see if it disappears. Operation and closure of the defect is required only if the hernia persists after the age of 3 years or if the child has an episode of complication during the period of observation like irreducibility, intestinal obstruction, abdominal distension with vomiting, or red shiny painful skin over the swelling. Surgery is always done under anesthesia. The defect in the muscles is defined and the edges of the muscles are brought together with sutures to close the defect. In general, the child needs to stay in the hospital for 2 days and the healing is complete within 8 days.
At times, there may be a fleshy red swelling seen in the hollow of the umbilicus that persists after the cord has fallen off. It may bleed on touch, or may stain the clothes that come in contact with it. This needs to be shown to a pediatric surgeon. This is most likely to be an umbilical polyp and the therapy is to tie it at the base with a stitch so that it falls off and there is no bleeding. Alternatively, it may be an umbilical granuloma that responds well to local application of dry salt or silver nitrate but may take a few weeks to heal and dry.
Umbilical cord ulceration and intestinal atresia is a rare congenital disease that leads to intestinal atresia, umbilical cord ulceration and severe intrauterine haemorrhage. Only 15 cases have so far been reported, though newer studies are beginning to conclude that this disease has a higher incidence rate than has been previously reported. A particular study has given intestinal atresia and umbilical cord ulceration a clear link after 5 such cases were reported at the time of publication.
Diagnosis is made through a combination of patient history, neurological examination, and medical imaging. Magnetic resonance imaging (MRI) is considered the best imaging modality for Chiari malformation since it visualizes neural tissue such as the cerebellar tonsils and spinal cord as well as bone and other soft tissues. CT and CT myelography are other options and were used prior to the advent of MRI, but they characterize syringomyelia and other neural abnormalities less well.
By convention the cerebellar tonsil position is measured relative to the basion-opisthion line, using sagittal T1 MRI images or sagittal CT images. The selected cutoff distance for abnormal tonsil position is somewhat arbitrary since not everyone will be symptomatic at a certain amount of tonsil displacement, and the probability of symptoms and syrinx increases with greater displacement, however greater than 5 mm is the most frequently cited cutoff number, though some consider 3–5 mm to be "borderline," and symptoms and syrinx may occur above that. One study showed little difference in cerebellar tonsil position between standard recumbent MRI and upright MRI for patients without a history of whiplash injury. Neuroradiological investigation is used to first rule out any intracranial condition that could be responsible for tonsillar herniation. Neuroradiological diagnostics evaluate the severity of crowding of the neural structures within the posterior cranial fossa and their impact on the foramen magnum. Chiari 1.5 is a term used when both brainstem and tonsillar herniation through the foramen magnum are present.
The diagnosis of a Chiari II malformation can be made prenatally through ultrasound.
There is no cure for short bowel syndrome except transplant. In newborn infants, the 4-year survival rate on parenteral nutrition is approximately 70%. In newborn infants with less than 10% of expected intestinal length, 5 year survival is approximately 20%. Some studies suggest that much of the mortality is due to a complication of the total parenteral nutrition (TPN), especially chronic liver disease. Much hope is vested in Omegaven, a type of lipid TPN feed, in which recent case reports suggest the risk of liver disease is much lower.
Although promising, small intestine transplant has a mixed success rate, with postoperative mortality rate of up to 30%. One-year and 4-year survival rate are 90% and 60%, respectively.
In the late 19th century, Austrian pathologist Hans Chiari described seemingly related anomalies of the hindbrain, the so-called Chiari malformations I, II and III. Later, other investigators added a fourth (Chiari IV) malformation. The scale of severity is rated I – IV, with IV being the most severe. Types III and IV are very rare.
Other conditions sometimes associated with Chiari malformation include hydrocephalus, syringomyelia, spinal curvature, tethered spinal cord syndrome, and connective tissue disorders such as Ehlers-Danlos syndrome and Marfan syndrome.
Chiari malformation is the most frequently used term for this set of conditions. The use of the term Arnold–Chiari malformation has fallen somewhat out of favor over time, although it is used to refer to the type II malformation. Current sources use "Chiari malformation" to describe four specific types of the condition, reserving the term "Arnold-Chiari" for type II only. Some sources still use "Arnold-Chiari" for all four types.
Chiari malformation or Arnold–Chiari malformation should not be confused with Budd-Chiari syndrome, a hepatic condition also named for Hans Chiari.
In Pseudo-Chiari Malformation, Leaking of CSF may cause displacement of the cerebellar tonsils and similar symptoms sufficient to be mistaken for a Chiari I malformation.
The earliest point at which a CPAM can be detected is by prenatal ultrasound. The classic description is of an echogenic lung mass that gradually disappears over subsequent ultrasounds. The disappearance is due to the malformation becoming filled with fluid over the course of the gestation, allowing the ultrasound waves to penetrate it more easily and rendering it invisible on sonographic imaging. When a CPAM is rapidly growing, either solid or with a dominant cyst, they have a higher incidence of developing venous outflow obstruction, cardiac failure and ultimately "hydrops fetalis". If "hydrops" is not present, the fetus has a 95% chance of survival. When hydrops is present, risk of fetal demise is much greater without "in utero" surgery to correct the pathophysiology. The greatest period of growth is during the end of the second trimester, between 20–26 weeks.
A measure of mass volume divided by head circumference, termed cystic adenomatoid malformation volume ratio (CVR) has been developed to predict the risk of "hydrops". The lung mass volume is determined using the formula (length × width × anteroposterior diameter ÷ 2), divided by head circumference. With a CVR greater than 1.6 being considered high risk. Fetuses with a CVR less than 1.6 and without a dominant cyst have less than a 3% risk of hydrops. After delivery, if the patient is symptomatic, resection is mandated. If the infant is asymptomatic, the need for resection is a subject of debate, though it is usually recommended. Development of recurrent infections, rhabdomyosarcoma, adenocarcinomas "in situ" within the lung malformation have been reported.
Intestinal decompression by tube placement in a small stoma can also be used to reduce distension and pressure within the gut. The stoma may be a gastrostomy, jejunostomy, ileostomy or cecostomy, and may also be used to feed, in the case of gastrostomy and jejunostomy, or flush the intestines.
Colostomy or ileostomy can bypass affected parts if they are distal to (come after) the stoma. For instance, if only the large colon is affected, an ileostomy may be helpful. Either of these ostomies are typically placed at or a few centimeters below the patients belly button per doctor recommendation based on the affected area of the intestines as well as concerns for patient comfort and future physical growth for children.
The total removal of the colon, called a colectomy or resection of affected parts of the colon may be needed if part of the gut dies (for instance toxic megacolon), or if there is a localised area of dysmotility.
Gastric and colonic pacemakers have been tried. These are strips placed along the colon or stomach which create an electric discharge intended to cause the muscle to contract in a controlled manner.
A potential solution, albeit radical, is a multi-organ transplant. The operation involved transplanting the pancreas, stomach, duodenum, small intestine, and liver, and was performed by Doctor Kareem Abu-Elmagd on Gretchen Miller, the subject of the Discovery Channel program "Surgery Saved My Life".
Treatment depends on the anatomy of the malformation as determined by angiography or Magnetic Resonance Imaging (MRI).
Traditionally, nothing by mouth was considered to be mandatory in all cases, but gentle feeding by enteral feeding tube may help to restore motility by triggering the gut's normal feedback signals, so this is the recommended management initially. When the patient has severe, persistent signs that motility is completely disrupted, nasogastric suction and parenteral nutrition may be required until passage is restored. In such cases, continuing aggressive enteral feeding causes a risk of perforating the gut.
Several options are available in the case of paralytic ileus. Most treatment is supportive. If caused by medication, the offending agent is discontinued or reduced. Bowel movements may be stimulated by prescribing lactulose, erythromycin or, in severe cases that are thought to have a neurological component (such as Ogilvie's syndrome), neostigmine. There is also evidence from a systematic review of randomized controlled trials that chewing gum, as a form of 'sham feeding', may stimulate gastrointestinal motility in the post-operative period and reduce the duration of postoperative ileus.
If possible the underlying cause is corrected (e.g. replace electrolytes).
Navels with the umbilical tip protruding past the umbilical skin ("outies") are often mistaken for umbilical hernias, which are a completely different shape. Treatment for cosmetic purposes is not necessary, unless there are Incarceration refers to the inability to reduce the hernia back into the abdominal cavity. Prolonged incarceration can lead to tissue ischemia (strangulation) and shock when untreated.
Umbilical hernias are rare. With a study involving Africans, 92% of children had protrusions, 49% of adults, and 90% of pregnant women. However, a much smaller amount actually suffered from hernias: only 23% of children, 8% of adults, and 15% of pregnant women.
When the orifice is small (< 1 or 2 cm), 90% close within 3 years (some sources state 85% of all umbilical hernias, regardless of size), and if these hernias are asymptomatic, reducible, and don't enlarge, no surgery is needed (and in other cases it must be considered).
Lymphatic malformations may be detected in the human fetus by ultrasound if they are of sufficient size. Detection of a cystic malformation may prompt further investigation, such as amniocentesis, in order to evaluate for genetic abnormalities in the fetus. Lymphatic malformations may be discovered postnatally or in older children/adults, and most commonly present as a mass or as an incidental finding during medical imaging.
Verification of the diagnosis may require more testing, as there are multiple cystic masses that arise in children. Imaging, such as ultrasound or MRI, may provide more information as to the size and extent of the lesion.
Ileus is a cause of colic in horses due to functional obstruction of the intestines. It most commonly seen in horses postoperatively, especially following colic surgery. Horses experiencing ileus are at risk for gastric rupture due to rapid reflux build-up, and require intense medical management with frequent nasogastric intubation. Ileus may increase adhesion formation, because intestinal segments have more prolonged contact and intestinal distention causes serosal injury and ischemia. It is usually treated with aggressive fluid support, prokinetics, and anti-inflammatories.
Conservative treatment involves the long term use of laxatives and enemas, and has limited success. Dietary changes in order to control the disease are ineffective and high fiber diets often worsen the symptoms in children. As a last resort, surgical treatment (internal sphincter myectomy or colon resection) is used. In extreme cases, the only effective cure is a complete transplant of the affected parts.
CPAMs are often identified during routine prenatal ultrasonography. Identifying characteristics on the sonogram include: an echogenic (bright) mass appearing in the chest of the fetus, displacement of the heart from its normal position, a flat or everted (pushed downward) diaphragm, or the absence of visible lung tissue.
CPAMs are classified into three different types based largely on their gross appearance. Type I has a large (>2 cm) multiloculated cysts. Type II has smaller uniform cysts. Type III is not grossly cystic, referred to as the "adenomatoid" type. Microscopically, the lesions are not true cysts, but communicate with the surrounding parenchyma. Some lesions have an abnormal connection to a blood vessel from an aorta and are referred to as "hybrid lesions."