Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Screening methods for colon cancer depend on detecting either precancerous changes such as certain kinds of polyps or on finding early and thus more treatable cancer. The extent to which screening procedures reduce the incidence of gastrointestinal cancer or mortality depends on the rate of precancerous and cancerous disease in that population. gFOBT (guaiac fecal occult blood test) and flexible sigmoidoscopy screening have each shown benefit in randomized clinical trials. Evidence for other colon cancer screening tools such as iFOBT (immunochemical fecal occult blood test) or colonoscopy is substantial and guidelines have been issued by several advisory groups but does not include randomized studies.
In 2009 the American College of Gastroenterology (ACG) suggest that colon cancer screening modalities that are also directly preventive by removing precursor lesions should be given precedence, and prefer a colonoscopy every 10 years in average-risk individuals, beginning at age 50. The ACG suggests that cancer detection tests such as any type of FOB are an alternative that is less preferred, and if a colonoscopy is declined, the FIT (fecal immunochemical test, or iFOBT) should be offered instead. Two other recent guidelines, from the US Multisociety Task Force (MSTF) and the US Preventive Services Task Force (USPSTF), while permitting immediate colonoscopy as an option, did not categorize it as preferred. The ACG and MSTF also included CT colonography every five years, and fecal DNA testing as considerations. All three recommendation panels recommended replacing any older low-sensitivity, guaiac-based fecal occult blood testing (gFOBT) with either newer high-sensitivity guaiac-based fecal occult blood testing (hs gFOBT) or fecal immunochemical testing (FIT). MSTF looked at six studies that compared high sensitivity gFOBT (Hemoccult SENSA) to FIT, and concluded that there was no clear difference in overall performance between these methods.
The American College of Gastroenterology has recommended the abandoning of gFOBT testing as a colorectal cancer screening tool, in favor of the fecal immunochemical test. Though the FIT test is preferred, even the guaiac FOB testing of average risk populations may have been sufficient to reduce the mortality associated with colon cancer by about 25%. With this lower efficacy, it was not always cost effective to screen a large population with gFOBT.
If colon cancer is suspected in an individual (such as in someone with an unexplained anemia) fecal occult blood tests may not be clinically helpful. If a doctor suspects colon cancer, more rigorous investigation is necessary, whether or not the test is positive.
In 2006, the Australian Government introduced the National Bowel Cancer Program which has been updated several times since; targeted screening will be done of all Australians aged over 50 to 74 by 2017–2018. Cancer Council Australia recommended that FOBT should be done every two years. Gradually government fund disbursement meant that some people are not yet eligible for the national program and should pay for a FOBT by themselves.
The Canadian Cancer Society recommends that men and women age 50 and over have a FOBT at least every 2 years.
In colon cancer screening, using only one sample of feces collected by a doctor performing a digital rectal examination is discouraged.
The use of the M2-PK Test is encouraged over gFOBT for routine screening as it may pick up tumors that are both bleeding and non bleeding. It is able to pick up 80 percent of colorectal cancer and 44 percent for adenoma > 1 centimeter, while gFOBT picks up 13 to 50 percent of colorectal cancers.
There are four methods in clinical use for testing for occult blood in feces. These look at different properties, such as antibodies, heme, globin, or porphyrins in blood, or at DNA from cellular material such as from lesions of the intestinal mucosa.
- Fecal immunochemical testing (FIT), and immunochemical fecal occult blood test (iFOBT). FIT products utilize specific antibodies to detect globin. FIT screening is more effective in terms of health outcomes and cost compared with guaiac FOBT. According to the guidelines of the American College of Gastroenterology, "Annual fecal immunochemical testing is the preferred colorectal cancer detection test." A FIT test detects globin levels in feces at or above 50 nanograms per mL, the established cutoff by the World Health Organization for Colorectal Cancer Screening.
FIT testing has replaced most gFOBT tests as the colon cancer screening test of choice. This methodology can be adapted for automated test reading and to report quantitative results, which are potential factors in design of a widescale screening strategy. The number of fecal samples submitted for FIT may affect the clinical sensitivity and specificity of the methodology.[8] High sensitivity gFOBT tests such as Hemoccult SENSA remains an accepted option;[8] and may retain a role in monitoring gastrointestinal conditions such as ulcerative colitis; however the FIT test is preferred in recent guidelines.
- Stool guaiac test for fecal occult blood (gFOBT): – The stool guaiac test involves smearing some feces onto some absorbent paper that has been treated with a chemical. Hydrogen peroxide is then dropped onto the paper; if trace amounts of blood are present, the paper will change color in one or two seconds. This method works as the heme component in hemoglobin has a peroxidase-like effect, rapidly breaking down hydrogen peroxide. In some settings such as gastric or proximal upper intestinal bleeding the guaiac method may be more sensitive than tests detecting globin because globin is broken down in the upper intestine to a greater extent than is heme. There are various commercially available gFOBT tests which have been categorized as being of low or high sensitivity, and only high sensitivity tests remain an acceptable alternative to FIT testing, which is now the best-practices recommendation in colon cancer screening. Optimal clinical performance of the stool guaiac test depends on preparatory dietary adjustment.
- Stool DNA screening tests look for DNA alterations that have been associated with cancer.
Additional methods of looking for occult blood are being explored, including transferrin dipstick and stool cytology.
There is no single, specific test for malabsorption. As for most medical conditions, investigation is guided by symptoms and signs. A range of different conditions can produce malabsorption and it is necessary to look for each of these specifically. Many tests have been advocated, and some, such as tests for pancreatic function are complex, vary between centers and have not been widely adopted. However, better tests have become available with greater ease of use, better sensitivity and specificity for the causative conditions. Tests are also needed to detect the systemic effects of deficiency of the malabsorbed nutrients (such as anaemia with vitamin B12 malabsorption).
A physical examination may reveal a mass or distention of the abdomen.
Tests which may be useful for diagnosis include:
- Abdominal x-ray
- Abdominal CT scan
- Contrast enema study
The diagnosis of bacterial overgrowth can be made by physicians in various ways. Malabsorption can be detected by a test called the "D-xylose" test. Xylose is a sugar that does not require enzymes to be digested. The D-xylose test involves having a patient drink a certain quantity of D-xylose, and measuring levels in the urine and blood; if there is no evidence of D-xylose in the urine and blood, it suggests that the small bowel is not absorbing properly (as opposed to problems with enzymes required for digestion).
The gold standard for detection of bacterial overgrowth is the aspiration of more than 10 bacteria per millilitre from the small bowel. The normal small bowel has less than 10 bacteria per millilitre. Some experts however, consider aspiration of more than 10 positive if the flora is predominately colonic type bacteria as these types of bacteria are considered pathological in excessive numbers in the small intestine. The reliability of aspiration in the diagnosis of SIBO has been questioned as SIBO can be patchy and the reproducibility can be as low as 38 percent. Breath tests have their own reliability problems with a high rate of false positive. Some doctors factor in a patients' response to treatment as part of the diagnosis.
Breath tests have been developed to test for bacterial overgrowth, based on bacterial metabolism of carbohydrates to hydrogen and/or methane, or based on the detection of by-products of digestion of carbohydrates that are not usually metabolized. The hydrogen breath test involves having the patient fast for a minimum of 12 hours then having them drink a substrate usually glucose or lactulose, then measuring expired hydrogen and methane concentrations typically over a period of 2–3 hours. It compares well to jejunal aspirates in making the diagnosis of bacterial overgrowth. C and C based tests have also been developed based on the bacterial metabolism of D-xylose. Increased bacterial concentrations are also involved in the deconjugation of bile acids. The glycocholic acid breath test involves the administration of the bile acid C glychocholic acid, and the detection of CO, which would be elevated in bacterial overgrowth.
Some patients with symptoms of bacterial overgrowth will undergo gastroscopy, or visualization of the stomach and duodenum with an endoscopic camera. Biopsies of the small bowel in bacterial overgrowth can mimic those of celiac disease, making the diagnosis more challenging. Findings include blunting of villi, hyperplasia of crypts and an increased number of lymphocytes in the lamina propria.
However, some physicians suggest that if the suspicion of bacterial overgrowth is high enough, the best diagnostic test is a trial of treatment. If the symptoms improve, an empiric diagnosis of bacterial overgrowth can be made.
For practical purposes, gastric pH an endoscopy should be done in someone with suspected achlorhydria. Older testing methods using fluid aspiration through a nasogastric tube can be done, but these procedures can cause significant discomfort and are less efficient ways to obtain a diagnosis.
A complete 24-hour profile of gastric acid secretion is best obtained during an esophageal pH monitoring study.
Achlorhydria may also be documented by measurements of extremely low levels of pepsinogen A (PgA) () in blood serum. The diagnosis may be supported by high serum gastrin levels ().
The "Heidelberg test" is an alternative way to measure stomach acid and diagnose hypochlorhydria/achlorhydria.
A check can exclude deficiencies in iron, calcium, prothrombin time, vitamin B-12, vitamin D, and thiamine. Complete blood count with indices and peripheral smears can be examined to exclude anemia. Elevation of serum folate is suggestive of small bowel bacterial overgrowth. Bacterial folate can be absorbed into the circulation.
Once achlorhydria is confirmed, a hydrogen breath test can check for bacterial overgrowth.
The treatment of BLS follows two basic principles. When a patient presents with symptoms of BLS, the treating physician basically has two recognized options for management:
- Test-and-treat
- Treat empirically
In the United States, biotin supplements are readily available without a prescription in amounts ranging from 1,000 to 10,000 micrograms (30 micrograms is identified as Adequate Intake).
Attempts must be made to determine whether there is a secondary cause amenable to treatment.
Primary (idiopathic) intestinal pseudo-obstruction is diagnosed based on motility studies, x-rays and gastric emptying studies.
HFM must be distinguished from cerebral folate deficiency (CFD)– a condition in which there is normal intestinal folate absorption, without systemic folate deficiency, but a decrease in CSF folate levels. This can accompany a variety of disorders. One form of CFD is due to loss-of-mutations in folate receptor-α, (FRα), which transports folates via an endocytic process. While PCFT is expressed primarily at the basolateral membrane of the choroid plexus, FRα, is expressed primarily at the apical brush-border membrane. Unlike subjects with HFM, patients with CFD present with neurological signs a few years after birth. The basis for the delay in the appearance of clinical manifestations due to loss of FRα function is not clear; the normal blood folate levels may be protective, although for a limited time.
Since biotin is in many foods at low concentrations, deficiency is rare except in locations where malnourishment is very common. Pregnancy, however, alters biotin catabolism and despite a regular biotin intake, half of the pregnant women in the U.S. are marginally biotin deficient.
Some studies reported up to 80% of patients with irritable bowel syndrome (IBS) have SIBO (using the hydrogen breath test). Subsequent studies demonstrated statistically significant reduction in IBS symptoms following therapy for SIBO.
There is a lack of consensus however, regarding the suggested link between IBS and SIBO. Other authors concluded that the abnormal breath results so common in IBS patients do not suggest SIBO, and state that "abnormal fermentation timing and dynamics of the breath test findings support a role for abnormal intestinal bacterial distribution in IBS." There is general consensus that breath tests are abnormal in IBS; however, the disagreement lies in whether this is representative of SIBO. More research is needed to clarifiy this possible link.
The CSF folate level is usually undetectable at the time of diagnosis. Even when the blood folate level is corrected, or far above normal, the CSF folate level remains low, consistent with impaired transport across the choroid plexus. The normal CSF folate level in children over the first three years of life is in the 75 to 150 nM range. In subjects with HFM it is very difficult indeed, rarely possible, to bring the CSF folate level into the normal range even with substantial doses of parenteral folate (see below).
The current gold standard diagnostic test for EE is intestinal biopsy and histological analysis. Histological changes observed include:
- Villous blunting
- Crypt hypertrophy
- Villous fusion
- Mucosal inflammation
However, this procedure is considered too invasive, complex and expensive to be implemented as standard of care. As a result, there are various research efforts underway to identify biomarkers associated with EE, which could serve as less invasive, yet representative, tools to screen for and identify EE from stool samples.
In an effort to identify simple, accurate diagnostic tests for EE, the Bill and Melinda Gates Foundation (BMGF) has established an EE biomarkers consortium as part of their Global Grand Challenges initiative (specifically, the Discover Biomarkers of Gut Function challenge).
So far, various biomarkers have been selected and studied based on the current understanding of EE pathophysiology:
- Gut permeability/barrier function
- Dual sugar permeability (lactose-to-mannitol ratio)
- Intestinal inflammation
- Alpha-1 anti-trypsin
- Neopterin
- Myeloperoxidase
- Exocrine (hormonal) markers
- Bacterial translocation markers
- Endotoxin core antibody
- Markers of systemic inflammation
- Alpha-1 glycoprotein
- C-reactive protein (CRP)
It is postulated that the limited of understanding of EE is partially due to the paucity of reliable biomarkers, making it difficult for researchers to track the epidemiology of the condition and assess the efficacy of interventions.
The National Institutes of Health has found that "Large amounts of folic acid can mask the damaging effects of vitamin B deficiency by correcting the megaloblastic anemia caused by vitamin B deficiency without correcting the neurological damage that also occurs", there are also indications that "high serum folate levels might not only mask vitamin B deficiency, but could also exacerbate the anemia and worsen the cognitive symptoms associated with vitamin B deficiency". Due to the fact that in the United States legislation has required enriched flour to contain folic acid to reduce cases of fetal neural-tube defects, consumers may be ingesting more than they realize. To counter the masking effect of B deficiency the NIH recommends "folic acid intake from fortified food and supplements should not exceed 1,000 μg daily in healthy adults." Most importantly, B deficiency needs to be treated with B repletion. Limiting folic acid will not counter the irrevocable neurological damage that is caused by untreated B deficiency.
Treatment is directed largely towards management of underlying cause:
- Replacement of nutrients, electrolytes and fluid may be necessary. In severe deficiency, hospital admission may be required for nutritional support and detailed advice from dietitians. Use of enteral nutrition by naso-gastric or other feeding tubes may be able to provide sufficient nutritional supplementation. Tube placement may also be done by percutaneous endoscopic gastrostomy, or surgical jejunostomy. In patients whose intestinal absorptive surface is severely limited from disease or surgery, long term total parenteral nutrition may be needed.
- Pancreatic enzymes are supplemented orally in pancreatic insufficiency.
- Dietary modification is important in some conditions:
- Gluten-free diet in coeliac disease.
- Lactose avoidance in lactose intolerance.
- Antibiotic therapy to treat Small Bowel Bacterial overgrowth.
- Cholestyramine or other bile acid sequestrants will help reducing diarrhoea in bile acid malabsorption.
Serum B levels are often low in B deficiency, but if other features of B deficiency are present with normal B then further investigation is warranted. One possible explanation for normal B levels in B deficiency is antibody interference in people with high titres of intrinsic factor antibody.
Some researchers propose that the current standard norms of vitamin B levels are too low.
One Japanese study states the normal limits as 500–1,300 pg/mL. Range of vitamin B12 levels in humans is considered as normal: >300 pg/mL; moderate deficiency: 201–300 pg/mL; and severe deficiency: <201 pg/mL.
Serum vitamin B tests results are in pg/mL (picograms/milliliter) or pmol/L (picomoles/liter). The laboratory reference ranges for these units are similar, since the molecular weight of B is approximately 1000, the difference between mL and L. Thus: 550 pg/mL = 400 pmol/L.
Serum homocysteine and methylmalonic acid levels are considered more reliable indicators of B deficiency than the concentration of B in blood. The levels of these substances are high in B deficiency and can be helpful if the diagnosis is unclear.
Routine monitoring of methylmalonic acid levels in urine is an option for people who may not be getting enough dietary B, as a rise in methylmalonic acid levels may be an early indication of deficiency.
If nervous system damage is suspected, B analysis in cerebrospinal fluid is possible, though such an invasive test should be considered only if blood testing is inconclusive.
The Schilling test has been largely supplanted by tests for antiparietal cell and intrinsic factor antibodies.
The initial workup of abetalipoproteinemia typically consists of stool sampling, a blood smear, and a fasting lipid panel though these tests are not confirmatory. As the disease is rare, though a genetics test is necessary for diagnosis, it is generally not done initially.
Acanthocytes are seen on blood smear. Since there is no or little assimilation of chylomicrons, their levels in plasma remains low.
The inability to absorb fat in the ileum will result in steatorrhea, or fat in the stool. As a result, this can be clinically diagnosed when foul-smelling stool is encountered. Low levels of plasma chylomicron are also characteristic.
There is an absence of apolipoprotein B. On intestinal biopsy, vacuoles containing lipids are seen in enterocytes. This disorder may also result in fat accumulation in the liver (hepatic steatosis). Because the epithelial cells of the bowel lack the ability to place fats into chylomicrons, lipids accumulate at the surface of the cell, crowding the functions that are necessary for proper absorption.
Multiple disorders are found in patients with radiation enteropathy, so guidance including an algorithmic approach to their investigation has been developed. This includes a holistic assessment with investigations including endoscopies, breath tests and other nutritional and gastrointestinal tests. Full investigation is important as many cancer survivors of radiation therapy develop other causes for their symptoms such as colonic polyps, diverticular disease or hemorrhoids.
Little is known on the prognosis of achlorhydria, although there have been reports of an increased risk of gastric cancer.
A 2007 review article noted that non-"Helicobacter" bacterial species can be cultured from achlorhydric (pH > 4.0) stomachs, whereas normal stomach pH only permits the growth of "Helicobacter" species. Bacterial overgrowth may cause false positive H. Pylori test results due to the change in pH from urease activity.
Small bowel bacterial overgrowth is a chronic condition. Retreatment may be necessary once every 1–6 months. Prudent use of antibacterials now calls for an antibacterial stewardship policy to manage antibiotic resistance.
In the US, the Dietary Reference Intake for adults is 55 µg/day. In the UK it is 75 µg/day for adult males and 60 µg/day for adult females. 55 µg/day recommendation is based on full expression of plasma glutathione peroxidase. Selenoprotein P is a better indicator of selenium nutritional status, and full expression of it would require more than 66 µg/day.
Prevention focuses on improving sanitation of water and food sources.
Treatment focuses on addressing the central components of intestinal inflammation, bacterial overgrowth and nutritional supplementation.
The official recommendation from the United States Preventive Services Task Force is that for persons that do not fall within an at-risk population and are asymptomatic, there is not enough evidence to prove that there is any benefit in screening for vitamin D deficiency.
Genetic tests may be useful in assessing whether a person has primary lactose intolerance. Lactase activity persistence in adults is associated with two polymorphisms: C/T 13910 and G/A 22018 located in the "MCM6" gene. These polymorphisms may be detected by molecular biology techniques at the DNA extracted from blood or saliva samples; genetic kits specific for this diagnosis are available. The procedure consists of extracting and amplifying DNA from the sample, following with a hybridation protocol in a strip. Colored bands are obtained as final result, and depending on the different combination, it would be possible to determine whether the patient is lactose intolerant. This test allows a noninvasive definitive diagnostic.
Investigations are performed to exclude other conditions:
- Stool microscopy and culture (to exclude infectious conditions)
- Blood tests: Full blood examination, liver function tests, erythrocyte sedimentation rate, and serological testing for coeliac disease
- Abdominal ultrasound (to exclude gallstones and other biliary tract diseases)
- Endoscopy and biopsies (to exclude peptic ulcer disease, coeliac disease, inflammatory bowel disease, and malignancies)
- Hydrogen breath testing (to exclude fructose and lactose malabsorption)