Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Bronchoalveolar lavage (BAL) is a well-tolerated diagnostic procedure in ILD. BAL cytology analyses (differential cell counts) should be considered in the evaluation of patients with IPF at the discretion of the treating physician based on availability and experience at their institution. BAL may reveal alternative specific diagnoses: malignancy, infections, eosinophilic pneumonia, histiocytosis X, or alveolar proteinosis. In the evaluation of patients with suspected IPF, the most important application of BAL is in the exclusion of other diagnoses. Prominent lymphocytosis (>30%) generally allows excluding a diagnosis of IPF.
According to the updated 2011 guidelines, in the absence of a typical UIP pattern on HRCT, a surgical lung biopsy is required for confident diagnosis.
Histologic specimens for the diagnosis of IPF must be taken at least in three different places and be large enough that the pathologist can comment on the underlying lung architecture. Small biopsies, such as those obtained via transbronchial lung biopsy (performed during bronchoscopy) are usually not sufficient for this purpose. Hence, larger biopsies obtained surgically via a thoracotomy or thoracoscopy are usually necessary.
Lung tissue from people with IPF usually show a characteristic histopathologic UIP pattern and is therefore the pathologic counterpart of IPF. Although a pathologic diagnosis of UIP often corresponds to a clinical diagnosis of IPF, a UIP histologic pattern can be seen in other diseases as well, and fibrosis of known origin (rheumatic diseases for example). There are four key features of UIP including interstitial fibrosis in a ‘patchwork pattern’, interstitial scarring, honeycomb changes and fibroblast foci.
Fibroblastic foci are dense collections of myofibroblasts and scar tissue and, together with honeycombing, are the main pathological findings that allow a diagnosis of UIP.
COPD may need to be differentiated from other causes of shortness of breath such as congestive heart failure, pulmonary embolism, pneumonia, or pneumothorax. Many people with COPD mistakenly think they have asthma. The distinction between asthma and COPD is made on the basis of the symptoms, smoking history, and whether airflow limitation is reversible with bronchodilators at spirometry. Tuberculosis may also present with a chronic cough and should be considered in locations where it is common. Less common conditions that may present similarly include bronchopulmonary dysplasia and obliterative bronchiolitis. Chronic bronchitis may occur with normal airflow and in this situation it is not classified as COPD.
Investigation is tailored towards the symptoms and signs. A proper and detailed history looking for the occupational exposures, and for signs of conditions listed above is the first and probably the most important part of the workup in patients with interstitial lung disease. Pulmonary function tests usually show a restrictive defect with decreased diffusion capacity (DLCO).
A lung biopsy is required if the clinical history and imaging are not clearly suggestive of a specific diagnosis or malignancy cannot otherwise be ruled out. In cases where a lung biopsy is indicated, a trans-bronchial biopsy is usually unhelpful, and a surgical lung biopsy is often required.
Chest radiography is usually the first test to detect interstitial lung diseases, but the chest radiograph can be normal in up to 10% of patients, especially early on the disease process.
High resolution CT of the chest is the preferred modality, and differs from routine CT of the chest. Conventional (regular) CT chest examines 7–10 mm slices obtained
at 10 mm intervals; high resolution CT examines 1-1.5 mm slices at 10 mm
intervals using a high spatial frequency reconstruction algorithm. The HRCT therefore provides approximately 10 times more resolution than the conventional CT chest, allowing the HRCT to elicit details that cannot otherwise be visualized.
Radiologic appearance alone however is not adequate and should be interpreted in the clinical context, keeping in mind the temporal profile of the disease process.
Interstitial lung diseases can be classified according to radiologic patterns.
A chest X-ray and complete blood count may be useful to exclude other conditions at the time of diagnosis. Characteristic signs on X-ray are overexpanded lungs, a flattened diaphragm, increased retrosternal airspace, and bullae, while it can help exclude other lung diseases, such as pneumonia, pulmonary edema, or a pneumothorax. A high-resolution computed tomography scan of the chest may show the distribution of emphysema throughout the lungs and can also be useful to exclude other lung diseases. Unless surgery is planned, however, this rarely affects management. An analysis of arterial blood is used to determine the need for oxygen; this is recommended in those with an FEV less than 35% predicted, those with a peripheral oxygen saturation less than 92%, and those with symptoms of congestive heart failure. In areas of the world where alpha-1 antitrypsin deficiency is common, people with COPD (particularly those below the age of 45 and with emphysema affecting the lower parts of the lungs) should be considered for testing.
Multiple abnormal laboratory findings have been noted in indium lung. High levels of serum indium have been found in all cases of indium lung. Other abnormal laboratory values that have been found include elevated alanine aminotransferase, elevated aspartate aminotransferase, elevated C-reactive protein, elevated interstitial lung disease markers, and elevated GM-CSF autoantibodies.
UIP may be diagnosed by a radiologist using computed tomography (CT) scan of the chest, or by a pathologist using tissue obtained by a lung biopsy. Radiologically, the main feature required for a confident diagnosis of UIP is honeycomb change in the periphery and the lower portions (bases) of the lungs. The histologic hallmarks of UIP, as seen in lung tissue under a microscope by a pathologist, are interstitial fibrosis in a "patchwork pattern", honeycomb change and fibroblast foci (see images below).
Respiratory diseases may be investigated by performing one or more of the following tests
- Biopsy of the lung or pleura
- Blood test
- Bronchoscopy
- Chest x-ray
- Computed tomography scan, including high-resolution computed tomography
- Culture of microorganisms from secretions such as sputum
- Ultrasound scanning can be useful to detect fluid such as pleural effusion
- Pulmonary function test
- Ventilation—perfusion scan
CT scanning and radiography can be used to aid in the diagnosis of indium lung. CT abnormalities include ground-glass opacities, interlobular septal thickening, honeycombing, and bronchiectasis.
The diagnosis of RA was formerly based on detection of rheumatoid factor (RF). However, RF is also associated with other autoimmune diseases. The detection of anti-CCP is currently considered the most specific marker of RA. The diagnosis of rheumatoid lung disease is based on evaluation of pulmonary function, radiology, serology and lung biopsy. High resolution CT scans are preferred to chest X-rays due to their sensitivity and specificity.
Associated doctors to diagnosis this properly would be a Rheumatologists or Pulmonologist.
Within a physical examination doctors could find possible indications, such as hearing crackles (rales) when listening to the lungs with a stethoscope. Or, there may be decreased breath sounds, wheezing, a rubbing sound, or normal breath sounds. When listening to the heart, there may be abnormal heart sounds. Bronchoscopic, video-assisted, or open lung biopsy allows the histological characterization of pulmonary lesions, which can distinguish rheumatoid lung disease from other interstitial lung diseases.
The following tests may also show signs of rheumatoid lung disease:
- Chest x-ray may show:
- pleural effusion
- lower zone predominant reticular or reticulonodular pattern
- volume loss in advanced disease
- skeletal changes, e.g. erosion of clavicles, glenohumeral erosive arthropathy, superior rib notching
- Chest CT or HRCT features include:
- pleural thickening or effusion
- interstitial fibrosis
- bronchiectasis
- bronchiolitis obliterans
- large rheumatoid nodules
- single or multiple
- tend to be based peripherally
- may cavitate (necrobiotic lung nodules)
- cavitation of a peripheral nodule can lead to pneumothorax or haemopneumothorax.
- follicular bronchiolitis
- small centrilobular nodules or tree-in-bud
- rare
- Caplan syndrome
- Echocardiogram (may show pulmonary hypertension)
- Lung biopsy (bronchoscopic, video-assisted, or open), which may show pulmonary lesions
- Lung function tests
- Needle inserted into the fluid around the lung (thoracentesis)
- Blood tests for rheumatoid arthritis
The exact cause of rheumatoid lung disease is unknown. However, associated factors could be due largely to smoking. Sometimes, the medicines used to treat rheumatoid arthritis, especially methotrexate, may result in lung disease.
Prevention's:
- Stop smoking: Chemicals found in cigarettes can irritate already delicate lung tissue, leading to further complications.
- Having regular checkups: The doctor could listen to lungs and monitor breathing, because lung problems that are detected early can be easier to treat.
Respiratory disease is a common and significant cause of illness and death around the world. In the US, approximately 1 billion "common colds" occur each year. A study found that in 2010, there were approximately 6.8 million emergency department visits for respiratory disorders in the U.S. for patients under the age of 18. In 2012, respiratory conditions were the most frequent reasons for hospital stays among children.
In the UK, approximately 1 in 7 individuals are affected by some form of chronic lung disease, most commonly chronic obstructive pulmonary disease, which includes asthma, chronic bronchitis and emphysema.
Respiratory diseases (including lung cancer) are responsible for over 10% of hospitalizations and over 16% of deaths in Canada.
In 2011, respiratory disease with ventilator support accounted for 93.3% of ICU utilization in the United States.
The differential diagnosis includes other types of lung disease that cause similar symptoms and show similar abnormalities on chest radiographs. Some of these diseases cause fibrosis, scarring or honeycomb change. The most common considerations include:
- chronic hypersensitivity pneumonitis
- non-specific interstitial pneumonia
- sarcoidosis
- pulmonary Langerhans cell histiocytosis
- asbestosis
According to the American Thoracic Society (ATS), the general diagnostic criteria for asbestosis are:
- Evidence of structural pathology consistent with asbestosis, as documented by imaging or histology
- Evidence of causation by asbestos as documented by the occupational and environmental history, markers of exposure (usually pleural plaques), recovery of asbestos bodies, or other means
- Exclusion of alternative plausible causes for the findings
The abnormal chest x-ray and its interpretation remain the most important factors in establishing the presence of pulmonary fibrosis. The findings usually appear as small, irregular parenchymal opacities, primarily in the lung bases. Using the ILO Classification system, "s", "t", and/or "u" opacities predominate. CT or high-resolution CT (HRCT) are more sensitive than plain radiography at detecting pulmonary fibrosis (as well as any underlying pleural changes). More than 50% of people affected with asbestosis develop plaques in the parietal pleura, the space between the chest wall and lungs. Once apparent, the radiographic findings in asbestosis may slowly progress or remain static, even in the absence of further asbestos exposure. Rapid progression suggests an alternative diagnosis.
Asbestosis resembles many other diffuse interstitial lung diseases, including other pneumoconiosis. The differential diagnosis includes idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis, sarcoidosis, and others. The presence of pleural plaquing may provide supportive evidence of causation by asbestos. Although lung biopsy is usually not necessary, the presence of asbestos bodies in association with pulmonary fibrosis establishes the diagnosis. Conversely, interstitial pulmonary fibrosis in the absence of asbestos bodies is most likely not asbestosis. Asbestos bodies in the absence of fibrosis indicate exposure, not disease.
Chronic obstructive pulmonary disease (COPD), also known as chronic obstructive airways disease (COAD) or chronic airflow limitation (CAL), is a group of illnesses characterised by airflow limitation that is not fully reversible. The flow of air into and out of the lungs is impaired. This can be measured with breathing devices such as a peak flow meter or by spirometry. The term COPD includes the conditions emphysema and chronic bronchitis although most patients with COPD have characteristics of both conditions to varying degrees. Asthma being a reversible obstruction of airways is often considered separately, but many COPD patients also have some degree of reversibility in their airways.
In COPD, there is an increase in airway resistance, shown by a decrease in the forced expiratory volume in 1 second (FEV1) measured by spirometry. COPD is defined as a forced expiratory volume in 1 second to forced vital capacity ratio (FEV1/FVC) that is less than 0.7. The residual volume, the volume of air left in the lungs following full expiration, is often increased in COPD, as is the total lung capacity, while the vital capacity remains relatively normal. The increased total lung capacity (hyperinflation) can result in the clinical feature of a "barrel chest" - a chest with a large front-to-back diameter that occurs in some individuals with COPD. Hyperinflation can also be seen on a chest x-ray as a flattening of the diaphragm.
The most common cause of COPD is cigarette smoking. COPD is a gradually progressive condition and usually only develops after about 20 pack-years of smoking. COPD may also be caused by breathing in other particles and gases.
The diagnosis of COPD is established through spirometry although other pulmonary function tests can be helpful. A chest x-ray is often ordered to look for hyperinflation and rule out other lung conditions but the lung damage of COPD is not always visible on a chest x-ray. Emphysema, for example can only be seen on CT scan.
The main form of long term management involves the use of inhaled bronchodilators (specifically beta agonists and anticholinergics) and inhaled corticosteroids. Many patients eventually require oxygen supplementation at home. In severe cases that are difficult to control, chronic treatment with oral corticosteroids may be necessary, although this is fraught with significant side-effects.
COPD is generally irreversible although lung function can partially recover if the patient stops smoking. Smoking cessation is an essential aspect of treatment. Pulmonary rehabilitation programmes involve intensive exercise training combined with education and are effective in improving shortness of breath. Severe emphysema has been treated with lung volume reduction surgery, with some success in carefully chosen cases. Lung transplantation is also performed for severe COPD in carefully chosen cases.
Alpha 1-antitrypsin deficiency is a fairly rare genetic condition that results in COPD (particularly emphysema) due to a lack of the antitrypsin protein which protects the fragile alveolar walls from protease enzymes released by inflammatory processes.
The prevalence of pulmonary interstitial emphysema widely varies with the population studied. In a 1987 study 3% of infants admitted to the neonatal intensive care unit (NICU) developed pulmonary interstitial emphysema.
Pulmonary interstitial emphysema often resolves gradually and may take 2–3 weeks. For longer durations of PIE the length of time of mechanical ventilation needed may increase and the incidence of bronchopulmonary dysplasia becomes higher. Some infants may develop chronic lobar emphysema, which may require surgical lobectomies.
Significant cases of subcutaneous emphysema are easy to diagnose because of the characteristic signs of the condition. In some cases, the signs are subtle, making diagnosis more difficult. Medical imaging is used to diagnose the condition or confirm a diagnosis made using clinical signs. On a chest radiograph, subcutaneous emphysema may be seen as radiolucent striations in the pattern expected from the pectoralis major muscle group. Air in the subcutaneous tissues may interfere with radiography of the chest, potentially obscuring serious conditions such as pneumothorax. It can also reduce the effectiveness of chest ultrasound. On the other hand, since subcutaneous emphysema may become apparent in chest X-rays before a pneumothorax does, its presence may be used to infer that of the latter injury. Subcutaneous emphysema can also be seen in CT scans, with the air pockets appearing as dark areas. CT scanning is so sensitive that it commonly makes it possible to find the exact spot from which air is entering the soft tissues. In 1994, M.T. Macklin and C.C. Macklin published further insights into the pathophysiology of spontaneous Macklin's Syndrome occurring from a severe asthmatic attack.
The presence of subcutaneous emphysema in a person who appears quite ill and febrile after bout of vomiting followed by left chest pain is very suggestive of the diagnosis of Boerhaave's syndrome, which is a life-threatening emergency caused by rupture of the distal esophagus.
There are three basic criteria for the diagnosis of CWP:
1. Chest radiography consistent with CWP
2. An exposure history to coal dust (typically underground coal mining) of sufficient amount and latency
3. Exclusion of alternative diagnoses (mimics of CWP)
Symptoms and pulmonary function testing relate to the degree of respiratory impairment but are not part of the diagnostic criteria. As noted above, the chest X-ray appearance for CWP can be virtually indistinguishable from silicosis. Chest CT, particularly high-resolution scanning (HRCT), are more sensitive than plain X-ray for detecting the small round opacities.
In restrictive lung disease, both forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) are reduced, however, the decline in FVC is more than that of FEV1, resulting in a higher than 80% FEV1/FVC ratio.
In obstructive lung disease however, the FEV1/FVC is less than 0.7, indicating that FEV1 is significantly reduced when compared to the total expired volume. This indicates that the FVC is also reduced, but not by the same ratio as FEV1.
One definition requires a total lung capacity which is 80% or less of the expected value.
There is no cure available for asbestosis. Oxygen therapy at home is often necessary to relieve the shortness of breath and correct underlying low blood oxygen levels. Supportive treatment of symptoms includes respiratory physiotherapy to remove secretions from the lungs by postural drainage, chest percussion, and vibration. Nebulized medications may be prescribed in order to loosen secretions or treat underlying chronic obstructive pulmonary disease. Immunization against pneumococcal pneumonia and annual influenza vaccination is administered due to increased sensitivity to the diseases. Those with asbestosis are at increased risk for certain cancers. If the person smokes, quitting the habit reduces further damage. Periodic pulmonary function tests, chest x-rays, and clinical evaluations, including cancer screening/evaluations, are given to detect additional hazards.
Rapid progression from initial symptoms to respiratory failure is a key feature. An x-ray that shows ARDS is necessary for diagnosis (fluid in the small air sacs (alveoli) in both lungs). In addition, a biopsy of the lung that shows organizing diffuse alveolar damage is required for diagnosis. Other diagnostic tests are useful in excluding other similar conditions, but history, x-ray, and biopsy are essential. These other tests may include basic blood work, blood cultures, and bronchoalveolar lavage.
The clinical picture is similar to ARDS, but AIP differs from ARDS in that the cause for AIP is not known.
A chest x-ray is useful to confirm or rule out a pneumothorax, pulmonary edema, or pneumonia. Spiral computed tomography with intravenous radiocontrast is the imaging study of choice to evaluate for pulmonary embolism.
A number of labs may be helpful in determining the cause of shortness of breath. D-dimer while useful to rule out a pulmonary embolism in those who are at low risk is not of much value if it is positive as it may be positive in a number of conditions that lead to shortness of breath. A low level of brain natriuretic peptide is useful in ruling out congestive heart failure; however, a high level while supportive of the diagnosis could also be due to advanced age, renal failure, acute coronary syndrome, or a large pulmonary embolism.