Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
At present, treatment for distal 18q- is symptomatic, meaning the focus is on treating the signs and symptoms of the conditions as they arise. To ensure early diagnosis and treatment, people with distal 18q- are suggested to undergo routine screenings for thyroid, hearing, and vision problems.
Suspicion of a chromosome abnormality is typically raised due to the presence of developmental delays or birth defects. Diagnosis of distal 18q- is usually made from a blood sample. A routine chromosome analysis, or karyotype, is usually used to make the initial diagnosis, although it may also be made by microarray analysis. Increasingly, microarray analysis is also being used to clarify breakpoints. Prenatal diagnosis is possible using amniocentesis or chorionic villus sampling.
Differential diagnosis includes Angelman syndrome, Mowat–Wilson syndrome and Rett syndrome.
Though the outcome for individuals with either form of the tetrasomy is highly variable, mosaic individuals consistently experience a more favourable outcome than those with the non-mosaic form. Some affected infants die shortly after birth, particularly those with the non-mosaic tetrasomy. Many patients do not survive to reproductive age, while others are able to function relatively normally in a school or workplace setting. Early diagnosis and intervention has been shown to have a strong positive influence on the prognosis.
Diagnosis is made by showing a mutation in the TCF4 gene.
Around 50% of those affected show abnormalities on brain imaging. These include hypoplastic corpus callosum with a missing rostrum and posterior part of the splenium with bulbous caudate nuclei bulging towards the frontal horns.
Electroencephalograms show an excess of slow components.
All have low levels of immunoglobulin M (IgM) but features of an immunodeficiency are absent.
Diagnosing Jacobsen Syndrome can be difficult in some cases because it is a rare chromosomal disorder. There are a variety of tests that can be carried out like karyotype, cardiac echocardiogram, a renal sonogram, a platelet count, blood count, a brain imaging study. Genetic testing can be carried out for diagnosis. In which chromosomes are stained to give a barcode like appearance and studied under the microscope which reveals the broken and deleted genes. It can also be diagnosed early in the prenatal stage if there are any abnormalities seen in the ultrasound. A simple assessment of the symptoms can be done to diagnose the Syndrome. A thorough physical examination could be carried out to assess the symptoms.
SMS is usually confirmed by blood tests called chromosome (cytogenetic) analysis and utilize a technique called FISH (fluorescent in situ hybridization). The characteristic micro-deletion was sometimes overlooked in a standard FISH test, leading to a number of people with the symptoms of SMS with negative results.
The recent development of the FISH for 17p11.2 deletion test has allowed more accurate detection of this deletion. However, further testing is required for variations of Smith–Magenis syndrome that are caused by a mutation of the "RAI1" gene as opposed to a deletion.
Children with SMS are often given psychiatric diagnoses such as autism, attention deficit/hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), attention deficit disorder (ADD) and/or mood disorders.
Since tetrasomy 9p is not usually inherited, the risk of a couple having a second child with the disorder is minimal. While patients often do not survive to reproductive age, those who do may or may not be fertile. The risk of a patient's child inheriting the disorder is largely dependent on the details of the individual's case.
Diagnosis is based on the distinctive cry and accompanying physical problems. These common symptoms are quite easily observed in infants. Affected children are typically diagnosed by a doctor or nurse at birth. Genetic counseling and genetic testing may be offered to families with individuals who have cri du chat syndrome. Prenatally the deletion of the cri du chat related region in the p arm of chromosome 5 can be detected from amniotic fluid or chorionic villi samples with BACs-on-Beads technology. G-banded karyotype of a carrier is also useful. Children may be treated by speech, physical and occupational therapists. Heart abnormalities often require surgical correction.
About 92% of pregnancies in Europe with a diagnosis of Down syndrome are terminated. In the United States, termination rates are around 67%, but this rate varied from 61% to 93% among different populations evaluated. When nonpregnant people are asked if they would have a termination if their fetus tested positive, 23–33% said yes, when high-risk pregnant women were asked, 46–86% said yes, and when women who screened positive are asked, 89–97% say yes.
Even though clinical diagnostic criteria have not been 100 percent defined for genitopatellar syndrome, the researchers stated that the certain physical features could relate to KAT6B mutation and result in the molecular genetic testing. The researchers stated that the Individuals with two major features or one major feature and two minor features are likely to have a KAT6B mutation.
To diagnose the Genitopatellar Syndrome, there are multiple ways to evaluate.
Medical genetics consultation
- Evaluation by developmental specialist
- Feeding evaluation
- Baseline hearing evaluation
- Thyroid function tests
- Evaluation of males for cryptorchidism
- Orthopedic evaluation if contractures are present or feet/ankles are malpositioned
- Hip radiographs to evaluate for femoral head dislocation
- Renal ultrasound examination for hydronephrosis and cysts
- Echocardiogram for congenital heart defects
- Evaluation for laryngomalacia if respiratory issues are present
- Evaluation by gastroenterologist as needed, particularly if bowel malrotation is suspected
Genetic testing methods such as fluorescence in situ hybridization (FISH) and chromosomal microarray are available for diagnosing Dup15q syndrome and similar genetic disorders.
With the increase in genetic testing availability, more often duplications outside of the 15q11.2-13.1 region are being diagnosed. The global chromosome 15q11.2-13.1 duplication syndrome specific groups only provide medical information and research for chromosome 15q11.2-13.1 duplication syndrome and not the outlying 15q duplications.
A diagnosis of beta-mannosidosis is suspected based on the persons clinical presentation. Urine testing to identify abnormal oligosaccharides is a useful screening test, and enzymatic analysis or molecular testing can be used for confirmation.
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
In May 2013, the US FDA granted Orphan drug status to Diiodothyropropionic acid (DITPA) in the treatment of MCT8 deficiency. This was following the use of DITPA towards a child in Australia, under compassionate grounds.
There is no established treatment for AHDS. Theoretical considerations suggested TRIAC (triiodothyroacetate or tiratricol, a natural non-classical thyroid hormone) to be beneficial. In 2014, a case was demonstrated in which therapy with TRIAC in early childhood led to significant improvement of cognition and mobility. Currently, the effect of Triac is under investigation.
The syndrome primarily affects young males. Preliminary studies suggest that prevalence may be 1.8 per 10,000 live male births. 50% of those affected do not live beyond 25 years of age, with deaths attributed to the impaired immune function.
13q deletion syndrome can only be definitively diagnosed by genetic analysis, which can be done prenatally or after birth. Increased nuchal translucency in a first-trimester ultrasound may indicate the presence of 13q deletion.
There is no specific treatment for micro syndrome, but there are ways to help the disorders, and illnesses that come with it. Many individuals with Micro Syndrome need permanent assistance from their disorders and inabilities to move and support themselves. Seizures are not uncommon and patients should get therapy to help control them, and many patients also require wheelchairs to move, so an assistant would be needed at all times.
Those with micro syndrome are born appearing normal. At the age of one, mental and physical delays become apparent, along with some limb spasms. By the age of eight micro syndrome has already set in, and the patient will have joint contractures, Ocular Atrophy will become noticeable, the patient will most likely lose ability to walk, speak, and sometimes move at all.
Although LFS is usually suspected when intellectual disability and marfanoid habitus are observed together in a patient, the diagnosis of LFS can be confirmed by the presence of the p.N1007S missense mutation in the "MED12" gene.
Diagnostic techniques for this condition can be done to offer a DDx, via lectin histochemistry to distinguish between α-mannosidosis and beta-mannosidosis.
With appropriate treatment and management, patients with Weaver syndrome appear to do well, both physically and intellectually, throughout their life and have a normal lifespan. Their adult height is normal as well.
There is no cure available for Weaver syndrome. However, with multidisciplinary management such as neurological, pediatric, orthopedic, and psychomotor care and genetic counseling, symptoms can be managed. Surgery may be used to correct any skeletal issues. Physical and occupational therapy are considered an option to help with muscle tone. Also, speech therapy is often recommended for speech related problems.
In the differential diagnosis of LFS, another disorder that exhibits some features and symptoms of LFS and is also associated with a missense mutation of "MED12" is Opitz-Kaveggia syndrome (FGS). Common features shared by both LFS and FGS include X-linked intellectual disability, hyperactivity, macrocephaly, corpus callosum agenesis and hypotonia. Notable features of FGS that have not been reported with LFS include excessive talkativness, consistent strength in socialization skills, imperforate anus (occlusion of the anus) and ocular hypertelorism (extremely wide-set eyes).
Whereas LFS is associated with missense mutation p.N1007S, FGS is associated with missense mutation p.R961W. As both disorders originate from an identical type of mutation in the same gene, while exhibiting similar, yet distinct characteristics; LFS and FGS are considered to be allelic. In the context of "MED12", this suggests that the phenotype of each disorder is related to the way in which their respective mutations alter the "MED12" sequence and its function.
The diagnosis can often be suspected based on the child's physical appearance at birth. An analysis of the child's chromosomes is needed to confirm the diagnosis, and to determine if a translocation is present, as this may help determine the risk of the child's parents having further children with Down syndrome. Parents generally wish to know the possible diagnosis once it is suspected and do not wish pity.
The diagnosis of Wilson–Turner syndrome is based upon a clinical evaluation, a detailed patient history, and identification of characteristic features. Molecular genetic testing for mutations in the HDAC8 gene is now available to confirm the diagnosis.