Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
PD diagnosis is based primarily on the presence and position of ulcers on the skin, as well as identifying particular protein markers in urine. To confirm the diagnosis, a blood test is required to measure prolidase activity.
Among the diagnostic tests that can be done in determining if an individual has complement deficiencies is:
- CH50 measurement
- Immunochemical methods/test
- C3 deficiency screening
- Mannose-binding lectin (lab study)
- Plasma levels/regulatory proteins (lab study)
Typically, diagnosis involves several preliminary tests of immune function, including basic evaluation of the humoral immune system and the cell-mediated immune system. A WBC differential will reveal extremely elevated levels of neutrophils (on the order of 6-10x normal) because they are unable to leave the blood vessels.
In the case of LAD-I, specific diagnosis is done by flow cytometry. This technique will reveal absent or reduced CD18 expression in the leukocyte membrane. Recently, prenatal diagnosis systems has been established, allowing an early detection of the disease.
LAD-II diagnosis includes the study of different glycosilated forms of the transferrin protein. In LAD-III, as platelet function is also affected, this could be used to differentiate it from the other types.
Biotinidase deficiency can be found by genetic testing. This is often done at birth as part of newborn screening in several states throughout the United States. Results are found through testing a small amount of blood gathered through a heel prick of the infant. As not all states require that this test be done, it is often skipped in those where such testing is not required. Biotinidase deficiency can also be found by sequencing the "BTD" gene, particularly in those with a family history or known familial gene mutation.
HFM must be distinguished from cerebral folate deficiency (CFD)– a condition in which there is normal intestinal folate absorption, without systemic folate deficiency, but a decrease in CSF folate levels. This can accompany a variety of disorders. One form of CFD is due to loss-of-mutations in folate receptor-α, (FRα), which transports folates via an endocytic process. While PCFT is expressed primarily at the basolateral membrane of the choroid plexus, FRα, is expressed primarily at the apical brush-border membrane. Unlike subjects with HFM, patients with CFD present with neurological signs a few years after birth. The basis for the delay in the appearance of clinical manifestations due to loss of FRα function is not clear; the normal blood folate levels may be protective, although for a limited time.
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
As of June 2014 (the latest update on HFM in GeneReviews) a total of 32 families had been reported with a clinical diagnosis of HFM of which there was genotypic confirmation in 24 families. Since then, another two confirmed cases have been reported and an additional case was reported based on a clinical diagnosis alone. Most cases emerge from consanguineous parents with homozygous mutations. There are three instances of HFM from non-consanguineous parents in which there were heterozygous mutations. HFM cases are worldwide with mostly private mutations. However, a number of families of Puerto Rican ancestry have been reported with a common pathogenic variant at a splice receptor site resulting in the deletion of exon 3 and the absence of transport function. A subsequent population-based study of newborn infants in Puerto Rico identified the presence of the same variant on the island. Most of the pathogenic variants result in a complete loss of the PCFT protein or point mutations that result in the complete loss of function. However, residual function can be detected with some of the point mutants.
The diagnosis of CTD is usually suspected based on the clinical presentation of mental retardation, abnormalities in cognitive and expressive speech, and developmental delay. Furthermore, a family history of X-linked intellectual disability, developmental coordination disorder, and seizures is strongly suggestive. Initial screening of CTD involves obtaining a urine sample and measuring the ratio of creatine to creatinine. If the ratio of creatine to creatinine is greater than 1.5, then the presence of CTD is highly likely. This is because a large ratio indicates a high amount of creatine in the urine. This, in turn, indicates inadequate transport of creatine into the brain and muscle. However, the urine screening test often fails in diagnosing heterozygous females. Studies have demonstrated that as a group heterozygous females have significantly decreased cerebral creatine concentration, but that individual heterozygous females often have normal creatine concentrations found in their urine. Therefore, urine screening tests are unreliable as a standard test for diagnosing CTD.
A more reliable and sophisticated manner of testing for cerebral creatine concentrations is through "in vivo" proton magnetic resonance spectroscopy (1H MRS). "In vivo" 1H MRS uses proton signals to determine the concentration of specific metabolites. This method of testing is more reliable because it provides a fairly accurate measurement of the amount of creatine inside the brain. Similar to urine testing, a drawback of using 1H MRS as a test for CTD is that the results of the test could be attributed to any of the cerebral creatine deficiencies. The most accurate and reliable method of testing for CTD is through DNA sequence analysis of the SLC6A8 gene. DNA analysis of SLC6A8 allows the identification of the location and type of mutation causing the cerebral creatine deficiency. Furthermore, DNA analysis of SLC6A8 is able to prove that a cerebral creatine deficiency is due to CTD and not GAMT or AGAT deficiency.
MRI will help with the diagnosis of structural abnormality of the brain. Genetic testing may also be pursued.
The diagnosis of Nezelof syndrome will indicate a deficiency of T-cells, additionally in ascertaining the condition the following is done:
The differential diagnosis for this condition consists of acquired immune deficiency syndrome and severe combined immunodeficiency syndrome
Based on the results of worldwide screening of biotinidase deficiency in 1991, the incidence of the disorder is:
5 in 137,401 for profound biotinidase deficiency
- One in 109,921 for partial biotinidase deficiency
- One in 61,067 for the combined incidence of profound and partial biotinidase deficiency
- Carrier frequency in the general population is approximately one in 120.
PNP-deficiency is extremely rare. Only 33 patients with the disorder in the United States have been documented. In the United Kingdom only one child has been diagnosed with this disorder.
No curative treatment is available for prolidase deficiency at this time, although palliative treatment is possible to some extent.
The latter mainly focuses on treating the skin lesions through standard methods and stalling collagen degradation (or boosting prolidase performance, where possible), so as to keep the intracellular dipeptide levels low and give the cells time to resynthesise or absorb what proline they cannot recycle so as to be able to rebuild what collagen "does" degrade. Patients can be treated orally with ascorbate (a.k.a. vitamin C, a cofactor of prolyl hydroxylase, an enzyme that hydroxylates proline, increasing collagen stability), manganese (a cofactor of prolidase), suppression of collagenase (a collagen degrading enzyme), and local applications of ointments that contain L-glycine and L-proline. The response to the treatment is inconsistent between affected individuals.
A therapeutic approach based on enzyme replacement (administering functional prolidase) is under consideration.
Due to the weakened immune response in PD cases, it is also of paramount importance to keep any infections under control, often with heavy antibiotics.
The diagnosis of hyper IgM syndrome can be done via the following methods and tests:
- MRI
- Chest radiography
- Pulmonary function test
- Lymph node test
- Laboratory test (to measure CD40)
A 2009 study reported results from 36 children who had received a stem cell transplant. At the time of follow-up (median time 62 months), 75% of the children were still alive.
The diagnosis of glycogen storage disease IX consists of the following:
- Complete blood count
- Urinalysis
- Histological study of the liver (via biopsy)
- Genetic testing
- Physical exam
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
Screening for elevated galactose levels may detect GALE deficiency or dysfunction in infants, and mutation studies for GALE are clinically available.
In terms of management for complement deficiency, immunosuppressive therapy should be used depending on the disease presented. A C1-INH concentrate can be used for angio-oedema (C1-INH deficiency).
Pneumococcus and haemophilus infections prevention can be taken via immunization for those with complement deficiency. Epsilon-aminocaproic acid could be used to treat hereditary C1-INH deficiency, though the possible side effect of intravascular thrombosis should be weighed.
CTD is difficult to treat because the actual transporter responsible for transporting creatine to the brain and muscles is defective. Studies in which oral creatine monohydrate supplements were given to patients with CTD found that patients did not respond to treatment. However, similar studies conducted in which patients that had GAMT or AGAT deficiency were given oral creatine monohydrate supplements found that patient’s clinical symptoms improved. Patients with CTD are unresponsive to oral creatine monohydrate supplements because regardless of the amount of creatine they ingest, the creatine transporter is still defective, and therefore creatine is incapable of being transported across the BBB. Given the major role that the BBB has in the transport of creatine to the brain and unresponsiveness of oral creatine monohydrate supplements in CTD patients, future research will focus on working with the BBB to deliver creatine supplements. However, given the limited number of patients that have been identified with CTD, future treatment strategies must be more effective and efficient when recognizing individuals with CTD.
Though BLSII is an attractive candidate for gene therapy, bone marrow transplant is currently the only treatment.
There are two types of this inherited condition, "glycogen storage disease IXa1" and "glycogen storage disease IXa2" that affect the liver of an individual. Mutations in PHKA2 have been seen in individuals with glycogen storage disease IXa2.
A diagnosis can be made through a muscle biopsy that shows excess glycogen accumulation. Glycogen deposits in the muscle are a result of the interruption of normal glucose breakdown that regulates the breakdown of glycogen. Blood tests are conducted to measure the activity of phosphofructokinase, which would be lower in a patient with this condition. Patients also commonly display elevated levels of creatine kinase.
Treatment usually entails that the patient refrain from strenuous exercise to prevent muscle pain and cramping. Avoiding carbohydrates is also recommended.
A ketogenic diet also improved the symptoms of an infant with PFK deficiency. The logic behind this treatment is that the low-carb high fat diet forces the body to use fatty acids as a primary energy source instead of glucose. This bypasses the enzymatic defect in glycolysis, lessening the impact of the mutated PFKM enzymes. This has not been widely studied enough to prove if it is a viable treatment, but testing is continuing to explore this option.
Genetic testing to determine whether or not a person is a carrier of the mutated gene is also available.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.