Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Polycystic kidney disease can be ascertained via a CT scan of abdomen, as well as, an MRI and ultrasound of the same area. A physical exam/test can reveal enlarged liver, heart murmurs and elevated blood pressure
Nephrocalcinosis is diagnosed for the most part by imaging techniques. The imagings used are ultrasound (US), abdominal plain film and CT imaging. Of the 3 techniques CT and US are the more preferred. Nephrocalcinosis is considered present if at least two radiologists make the diagnosis on US and/or CT. In some cases a renal biopsy is done instead if imaging is not enough to confirm nephrocalcinosis. Once the diagnosis is confirmed additional testing is needed to find the underlying cause because the underlying condition may require treatment for reasons independent of nephrocalcinosis. These additional tests will measure serum, electrolytes, calcium, and phosphate, and the urine pH. If no underlying cause can be found then urine collection should be done for 24 hours and measurements of the excretion of calcium, phosphate, oxalate, citrate, and creatinine are looked at.
ADPKD individuals might have a normal life; conversely, ARPKD can cause kidney dysfunction and can lead to kidney failure by the age of 40-60. ADPKD1 and ADPKD2 are very different, in that ADPKD2 is much milder.
Currently, there are no therapies proven effective to prevent the progression of polycystic kidney disease (autosomal dominant).
The deterioration of kidney function may be signaled by a measurable decrease in urine output. Often, it is diagnosed on the basis of blood tests for substances normally eliminated by the kidney: urea and creatinine. Additionally, the ratio of BUN to creatinine is used to evaluate kidney injury. Both tests have their disadvantages. For instance, it takes about 24 hours for the creatinine level to rise, even if both kidneys have ceased to function. A number of alternative markers has been proposed (such as NGAL, KIM-1, IL18 and cystatin C), but none of them is currently established enough to replace creatinine as a marker of kidney function.
Once the diagnosis of AKI is made, further testing is often required to determine the underlying cause. It is useful to perform a bladder scan or a post void residual to rule out urinary retention. In post void residual, a catheter is inserted into the urinary tract immediately after urinating to measure fluid still in the bladder. 50–100 ml suggests neurogenic bladder dysfunction.
These may include urine sediment analysis, renal ultrasound and/or kidney biopsy. Indications for kidney biopsy in the setting of AKI include the following:
1. Unexplained AKI, in a patient with two non-obstructed normal sized kidneys
2. AKI in the presence of the nephritic syndrome
3. Systemic disease associated with AKI
4. Kidney transplant dysfunction
In medical imaging, the acute changes in the kidney are often examined with renal ultrasonography as the first-line modality, where CT scan and magnetic resonance imaging (MRI) are used for the follow-up examinations and when US fails to demonstrate abnormalities. In evaluation of the acute changes in the kidney, the echogenicity of the renal structures, the delineation of the kidney, the renal vascularity, kidney size and focal abnormalities are observed. CT is preferred in renal traumas, but US is used for follow-up, especially in the patients suspected for the formation of urinomas. A CT scan of the abdomen will also demonstrate bladder distension or hydronephrosis. However, in AKI, the use of IV contrast is contraindicated as the contrast agent used is nephrotoxic.
The "RIFLE criteria", proposed by the Acute Dialysis Quality Initiative (ADQI) group, aid in assessment of the severity of a person's acute kidney injury. The acronym RIFLE is used to define the spectrum of progressive kidney injury seen in AKI:
- Risk: 1.5-fold increase in the serum creatinine, or glomerular filtration rate (GFR) decrease by 25 percent, or urine output <0.5 mL/kg per hour for six hours.
- Injury: Two-fold increase in the serum creatinine, or GFR decrease by 50 percent, or urine output <0.5 mL/kg per hour for 12 hours
- Failure: Three-fold increase in the serum creatinine, or GFR decrease by 75 percent, or urine output of <0.3 mL/kg per hour for 24 hours, or no urine output (anuria) for 12 hours
- Loss: Complete loss of kidney function (e.g., need for renal replacement therapy) for more than four weeks
- End-stage kidney disease: Complete loss of kidney function (e.g., need for renal replacement therapy) for more than three months
Classically, MSK is seen as hyperdense papillae with clusters of small stones on ultrasound examination of the kidney or with an abdominal x-ray. The irregular (ectatic) collecting ducts are often seen in MSK, which are sometimes described as having a "paintbrush-like" appearance, are best seen on intravenous urography. However, IV urography has been largely replaced by contrast-enhanced, high-resolution helical CT with digital reconstruction.
Increasing fluid intake to yield a urine output of greater than 2 liters a day can be advantageous for all patients with nephrocalcinosis. Patients with hypercalciuria can reduce calcium excretion by restricting animal protein, limiting sodium intake to less than 100 meq a day and being lax of potassium intake. If changing ones diet alone does not result in an suitable reduction of hypercalciuria, a thiazide diuretic can be administered in patients who do not have hypercalcemia. Citrate can increase the solubility of calcium in urine and limit the development of nephrocalcinosis. Citrate is not given to patients who have urine pH equal to or greater than 7.
Increasing access to, and use of, genome profiling may provide opportunity for diagnosis based on presentation and genetic risk factors, by identifying ApoL1 gene variants on chromosome 22.
The definitive diagnosis of HN requires morphological examination. Common histological features can be identified in the renal and glomerular vasculature. Glomerulosclerosis is often present, either focally or globally, which is characterized by hardening of the vessel walls. Also, luminal narrowing or the arteries and arterioles of the kidney system. However, this type of procedure is likely to be preceded with a provisional diagnosis based on laboratory investigations.
As of today, no agreed-upon treatment of Dent's disease is known and no therapy has been formally accepted. Most treatment measures are supportive in nature:
- Thiazide diuretics (i.e. hydrochlorothiazide) have been used with success in reducing the calcium output in urine, but they are also known to cause hypokalemia.
- In rats with diabetes insipidus, thiazide diuretics inhibit the NaCl cotransporter in the renal distal convoluted tubule, leading indirectly to less water and solutes being delivered to the distal tubule. The impairment of Na transport in the distal convoluted tubule induces natriuresis and water loss, while increasing the reabsorption of calcium in this segment in a manner unrelated to sodium transport.
- Amiloride also increases distal tubular calcium reabsorption and has been used as a therapy for idiopathic hypercalciuria.
- A combination of 25 mg of chlorthalidone plus 5 mg of amiloride daily led to a substantial reduction in urine calcium in Dent's patients, but urine pH was "significantly higher in patients with Dent’s disease than in those with idiopathic hypercalciuria (P < 0.03), and supersaturation for uric acid was consequently lower (P < 0.03)."
- For patients with osteomalacia, vitamin D or derivatives have been employed, apparently with success.
- Some lab tests on mice with CLC-5-related tubular damage showed a high-citrate diet preserved kidney function and delayed progress of kidney disease.
Patients will require dialysis to compensate for the function of their kidneys.
Often, aggressive treatment is unnecessary for people with MSK disease that does not cause any symptoms (asymptomatic). In such cases, treatment may consist of maintaining adequate fluid intake, with the goal of decreasing the risk of developing kidney stones (nephrolithiasis). Cases of recurrent kidney stone formation may warrant evaluation for possible underlying metabolic abnormalities.
In patients with low levels of citrate in the urine (hypocitraturia) and incomplete distal renal tubular acidosis, treatment with potassium citrate helps prevent the formation of new kidney stones. Urinary tract infections, when they occur, should also be treated.
Patients with the more rare form of MSK marked by chronic pain typically require pain management. Non-obstructing stones in MSK can be associated with significant and chronic pain even if they're not passing. The pain in this situation can be constant. It is not certain what causes this pain but researchers have proposed that the small numerous stones seen in MSK may cause obstruction of the small tubules and collecting ducts in the kidney which could lead to the pain. This pain can often be debilitating and treatment is challenging. Narcotic medication even with large quantities is sometimes not adequate. Some success with pain control has been reported using laser lithotripsy (called “ureteroscopic laser papillotomy”).
The pH of patient's blood is highly variable, and acidemia is not necessarily characteristic of sufferers of dRTA at any given time. One may have dRTA caused by alpha intercalated cell failure without necessarily being acidemic; termed "incomplete dRTA," which is characterized by an inability to acidify urine, without affecting blood pH or plasma bicarbonate levels. The diagnosis of dRTA can be made by the observation of a urinary pH of greater than 5.3 in the face of a systemic acidemia (usually taken to be a serum bicarbonate of 20 mmol/l or less). In the case of an incomplete dRTA, failure to acidify the urine following an oral acid loading challenge is often used as a test. The test usually performed is "the short ammonium chloride test", in which ammonium chloride capsules are used as the acid load. More recently, an alternative test using furosemide and fludrocortisone has been described.
Interestingly, dRTA has been proposed as a possible diagnosis for the unknown malady plaguing Tiny Tim in Charles Dickens' A Christmas Carol.
While the only diagnostic "gold standard" mechanism of diagnosis en vivo is via kidney biopsy, the clinical conditions and blood clotting disorder often associated with this disease may make it impractical in a clinical setting. Alternatively, it is diagnosed clinically, or at autopsy, with some authors suggesting diagnosis by contrast enhanced CT.
Prompt treatment of some causes of azotemia can result in restoration of kidney function; delayed treatment may result in permanent loss of renal function. Treatment may include hemodialysis or peritoneal dialysis, medications to increase cardiac output and increase blood pressure, and the treatment of the condition that caused the azotemia.
Dent disease 2 (nephrolithiasis type 2) is associated with the "OCRL" gene. Both Lowe syndrome (oculocerebrorenal syndrome) and Dent disease can be caused by truncating or missense mutations in "OCRL".
Phosphate nephropathy consists of damage to the kidneys caused by the formation of phosphate crystals within the kidney's tubules, damaging the nephron, and can cause acute kidney failure.
Phosphate nephropathy frequently occurs following the ingestion of oral sodium phosphate laxatives such as C.B. Fleet's Phospho soda and Salix's Visocol taken for bowel cleansing prior to a colonoscopy. The risk of this complication is increased with age, dehydration, or in the presence of hypertension or if the patient is taking an ACE inhibitor or angiotensin receptor blocker. Other agents used for bowel preparation (e.g. magnesium citrate or PEG-3350 & electrolyte-based purgatives such as Colyte or Golytely) do not carry this risk.
According to the U.S. Food and Drug Administration (FDA), "Acute phosphate nephropathy is a form of acute kidney injury that is associated with deposits of calcium-phosphate crystals in the renal tubules that may result in permanent renal function impairment. Acute phosphate nephropathy is a rare, serious adverse event that has been associated with the use of OSPs. The occurrence of these events was previously described in an Information for Healthcare Professionals sheet and an FDA Science Paper issued in May 2006. Additional cases of acute phosphate nephropathy have been reported to FDA and described in the literature since these were issued."
When a kidney damaged by phosphate nephropathy is biopsied, the pathological findings are typical of nephrocalcinosis: diffuse tubular injury with calcium phosphate crystal deposition.
Osmotic nephrosis refers to structural changes that occur at the cellular level in the human kidney. Cells, primarily of the straight proximal tubule, swell due to the formation of large vacuoles in the cytoplasm. These vacuoles occur in the presence of large amounts of certain solutes circulating in the tubules. However, despite the condition's name, the solutes do not cause change through osmotic forces but through pinocytosis. Once inside the cytoplasm, pinocytic vacuoles combine with each other and with lysosomes to form large vacuoles that appear transparent under microscopic examination.
There may be no symptomatic presentation with this condition, or it may confused with other nephrotic conditions such as Tubular calcineurin-inhibitor toxicity. Affected cells of the proximal tubule may be passed in the urine, but a kidney biopsy is the only sure way to make a diagnosis.
Responsible exogenous solutes include sucrose-containing IVIg, mannitol, dextran, contrast dye, and hydroxyethyl starch. Prevention includes standard preventions for iatrogenic kidney damage. Osmotic nephrosis is usually reversible but can lead to chronic renal failure.
Acute tubular necrosis (ATN) is a medical condition involving the death of tubular epithelial cells that form the renal tubules of the kidneys. ATN presents with acute kidney injury (AKI) and is one of the most common causes of AKI. Common causes of ATN include low blood pressure and use of nephrotoxic drugs. The presence of "muddy brown casts" of epithelial cells found in the urine during urinalysis is pathognomonic for ATN. Management relies on aggressive treatment of the factors that precipitated ATN (e.g. hydration and cessation of the offending drug). Because the tubular cells continually replace themselves, the overall prognosis for ATN is quite good if the cause is corrected, and recovery is likely within 7 to 21 days.
ATN may be classified as either "toxic" or "ischemic". Toxic ATN occurs when the tubular cells are exposed to a toxic substance (nephrotoxic ATN). Ischemic ATN occurs when the tubular cells do not get enough oxygen, a condition that they are highly sensitive and susceptible to, due to their very high metabolism.
Treatment of children with Fanconi syndrome mainly consists of replacement of substances lost in the urine (mainly fluid and bicarbonate).
Another approach would
Diagnosis of oculocerebrorenal syndrome can be done via genetic testing Among the different investigations that can de done are:
- Urinalysis
- MRI
- Blood test
This is relatively straightforward. It involves correction of the acidemia with oral sodium bicarbonate, sodium citrate or potassium citrate. This will correct the acidemia and reverse bone demineralisation. Hypokalemia and urinary stone formation and nephrocalcinosis can be treated with potassium citrate tablets which not only replace potassium but also inhibit calcium excretion and thus do not exacerbate stone disease as sodium bicarbonate or citrate may do.
Treatment consists of oral bicarbonate supplementation. However, this will increase urinary bicarbonate wasting and may well promote a bicarbonate . The amount of bicarbonate given may have to be very large to stay ahead of the urinary losses. Correction with oral bicarbonate may exacerbate urinary potassium losses and precipitate hypokalemia. As with dRTA, reversal of the chronic acidosis should reverse bone demineralization.
Thiazide diuretics can also be used as treatment by making use of contraction alkalosis caused by them.
Imaging studies, such as an intravenous urogram (IVU), renal ultrasonography, CT or MRI, are also important investigations in determining the presence and/ or cause of hydronephrosis. Whilst ultrasound allows for visualisation of the ureters and kidneys (and determine the presence of hydronephrosis and / or hydroureter), an IVU is useful for assessing the anatomical location of the obstruction. Antegrade or retrograde pyelography will show similar findings to an IVU but offer a therapeutic option as well. Real-time ultrasounds and Doppler ultrasound tests in association with vascular resistance testing helps determine how a given obstruction is effecting urinary functionality in hydronephrotic patients.
In determining the cause of hydronephrosis, it is important to rule out urinary obstruction. One way to do this is to test the kidney function. This can be done by, for instance, a diuretic intravenous pyelogram, in which the urinary system is observed radiographically after administration of a diuretic, such as 5% mannitol, and an intravenous iodine contrast. The location of obstruction can be determined with a Whittaker (or pressure perfusion) test, wherein the collecting system of the kidney is accessed percutaneously, and the liquid is introduced at high pressure and constant rate of 10ml/min while measuring the pressure within the renal pelvis. A rise in pressure above 22 cm HO suggests that the urinary collection system is obstructed. When arriving at this pressure measurement, bladder pressure is subtracted from the initial reading of internal pressure. (The test was first described by Whittaker in 1973 to test the hypothesis that patients' whose hydronephrosis persists after the posterior urethral valves have been ablated usually have ureters that are not obstructed, even though they may be dilated.)
Kay recommends that a neonate born with untreated in utero hydronephrosis receive a renal ultrasound within two days of birth. A renal pelvis greater than 12mm in a neonate is considered abnormal and suggests significant dilation and possible abnormalities such as obstruction or morphological abnormalities in the urinary tract.
The choice of imaging depends on the clinical presentation (history, symptoms and examination findings). In the case of renal colic (one sided loin pain usually accompanied by a trace of blood in the urine) the initial investigation is usually a spiral or helical CT scan. This has the advantage of showing whether there is any obstruction of flow of urine causing hydronephrosis as well as demonstrating the function of the other kidney. Many stones are not visible on plain X-ray or IVU but 99% of stones are visible on CT and therefore CT is becoming a common choice of initial investigation. CT is not used however, when there is a reason to avoid radiation exposure, e.g. in pregnancy.
For incidentally detected prenatal hydronephrosis, the first study to obtain is a postnatal renal ultrasound, since as noted, many cases of prenatal hydronephrosis resolve spontaneously. This is generally done within the first few days after birth, although there is some risk that obtaining an imaging study this early may miss some cases of mild hydronephrosis due to the relative oliguria of a newborn. Thus, some experts recommend obtaining a follow up ultrasound at 4–6 weeks to reduce the false-negative rate of the initial ultrasound. A voiding cystourethrogram (VCUG) is also typically obtained to exclude the possibility of vesicoureteral reflux or anatomical abnormalities such as posterior urethral valves. Finally, if hydronephrosis is significant and obstruction is suspected, such as a ureteropelvic junction (UPJ) or ureterovesical junction (UVJ) obstruction, a nuclear imaging study such as a MAG-3 scan is warranted.