Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Some suggestions for surveillance for cancer include the following:
- Small intestine with small bowel radiography every 2 years,
- Esophagogastroduodenoscopy and colonoscopy every 2 years,
- CT scan or MRI of the pancreas yearly,
- Ultrasound of the pelvis (women) and testes (men) yearly,
- Mammography (women) from age 25 annually livelong, and
- Papanicolaou smear (Pap smear) every year
Follow-up care should be supervised by a physician familiar with Peutz–Jeghers syndrome. Genetic consultation and counseling as well as urological and gynecological consultations are often needed.
Genetic testing for mutations in DNA mismatch repair genes is expensive and time-consuming, so researchers have proposed techniques for identifying cancer patients who are most likely to be HNPCC carriers as ideal candidates for genetic testing. The Amsterdam Criteria (see below) are useful, but do not identify up to 30% of potential Lynch syndrome carriers. In colon cancer patients, pathologists can measure microsatellite instability in colon tumor specimens, which is a surrogate marker for DNA mismatch repair gene dysfunction. If there is microsatellite instability identified, there is a higher likelihood for a Lynch syndrome diagnosis. Recently, researchers combined microsatellite instability (MSI) profiling and immunohistochemistry testing for DNA mismatch repair gene expression and identified an extra 32% of Lynch syndrome carriers who would have been missed on MSI profiling alone. Currently, this combined immunohistochemistry and MSI profiling strategy is the most advanced way of identifying candidates for genetic testing for the Lynch syndrome.
Genetic counseling and genetic testing are recommended for families that meet the Amsterdam criteria, preferably before the onset of colon cancer.
The following are the Amsterdam criteria in identifying high-risk candidates for molecular genetic testing:
"Amsterdam Criteria (all bullet points must be fulfilled):"
- Three or more family members with a confirmed diagnosis of colorectal cancer, one of whom is a first degree (parent, child, sibling) relative of the other two
- Two successive affected generations
- One or more colon cancers diagnosed under age 50 years
- Familial adenomatous polyposis (FAP) has been excluded
"Amsterdam Criteria II (all bullet points must be fulfilled):"
- Three or more family members with HNPCC-related cancers, one of whom is a first-degree relative of the other two
- Two successive affected generations
- One or more of the HNPCC-related cancers diagnosed under age 50 years
- Familial adenomatous polyposis (FAP) has been excluded
Definitive diagnosis is made by suction biopsy of the distally narrowed segment. A histologic examination of the tissue would show a lack of ganglionic nerve cells. Diagnostic techniques involve anorectal manometry, barium enema, and rectal biopsy.
The suction rectal biopsy is considered the current international gold standard in the diagnosis of Hirschsprung's disease.
Radiologic findings may also assist with diagnosis. Cineanography (fluoroscopy of contrast medium passing anorectal region) assists in determining the level of the affected intestines.
The main criteria for clinical diagnosis are:
- Family history
- Mucocutaneous lesions causing patches of hyperpigmentation in the mouth and on the hands and feet. The oral pigmentations are the first on the body to appear, and thus play an important part in early diagnosis. Intraorally, they are most frequently seen on the gingiva, hard palate and inside of the cheek. The mucosa of the lower lip is almost invariably involved as well.
- Hamartomatous polyps in the gastrointestinal tract. These are benign polyps with an extraordinarily low potential for malignancy.
Having 2 of the 3 listed clinical criteria indicates a positive diagnosis. The oral findings are consistent with other conditions, such as Addison's disease and McCune-Albright syndrome, and these should be included in the differential diagnosis. 90–100% of patients with a clinical diagnosis of PJS have a mutation in the "STK11/LKB1" gene. Molecular genetic testing for this mutation is available clinically.
Because of the way familial polyposis develops, it is possible to have the genetic condition, and therefore be at risk, but have no polyps or issues so far. Therefore, an individual may be diagnosed "at risk of" FAP, and require routine monitoring, but not (yet) actually have FAP (i.e., carries a defective gene but as yet appears not to have any actual medical issue as a result of this). Clinical management can cover several areas:
- Identifying those individuals who could be at risk of FAP: usually from family medical history or genetic testing
- Diagnosis (confirming whether they have FAP)—this can be done either by genetic testing, which is definitive, or by visually checking the intestinal tract itself.
- Screening / monitoring programs involve visually examining the intestinal tract to check its healthy condition. It is undertaken as a routine matter every few years where there is cause for concern, when either (a) a genetic test has confirmed the risk or (b) a genetic test has not been undertaken for any reason so the actual risk is unknown. Screening and monitoring allows polyposis to be detected visually before it can become life-threatening.
- Treatment, typically surgery of some kind, is involved if polyposis has led to a large number of polyps, or a significant risk of cancer, or actual cancer.
Monitoring involves the provision of outpatient colonoscopy, and occasionally upper gastric tract esophagogastroduodenoscopy (EGD, to search for premalignant gastric or duodenal tumors), typically once every 1–3 years, and/or a genetic blood test to definitively confirm or deny susceptibility. A small number of polyps can often be excised (removed) during the procedure, if found, but if there are more severe signs or numbers, in patient surgery may be required.
NCBI states that when an individual is identified as having FAP, or the mutations resulting in FAP: "It is appropriate to evaluate the parents of an affected individual (a) with molecular genetic testing of APC if the disease-causing mutation is known in the proband [person first identified with the condition] or (b) for clinical manifestations of APC-associated polyposis conditions".
Treatment of Hirschsprung's disease consists of surgical removal (resection) of the abnormal section of the colon, followed by reanastomosis.
The median age at diagnosis is 38 years. Women are at higher risk for developing breast cancer.
Surgical removal of the stomach (gastrectomy) is typically recommended after for people after 20 years of age, and before 40 years of age.
In terms of diagnosing Bannayan–Riley–Ruvalcaba syndrome there is no current method outside the physical characteristics that may be present as signs/symptoms. There are, however, multiple molecular genetics tests (and cytogenetic test) to determine Bannayan–Riley–Ruvalcaba syndrome.
Cronkhite–Canada syndrome is a rare syndrome characterized by multiple polyps of the digestive tract. It is sporadic (i.e. it does not seem to be a hereditary disease), and it is currently considered acquired and idiopathic (i.e. cause remains unknown).
About two-thirds of patients are of Japanese descent and the male to female ratio is 2:1. It was characterized in 1955.
Patients are usually managed by a multidisciplinary team including surgeons, gynecologists, and dermatologists because of the complex nature of this disorder. Follow-up for the increased risk of breast cancer risk includes monthly breast self-examination, annual breast examination, and mammography at age 30 or five years earlier than the youngest age of breast cancer in the family. The magnitude of the risk of breast cancer justifies routine screening with breast MRI as per published guidelines.
Screening for melanoma in FAMMM kindreds should begin at age 10 with a baseline total body skin examination including scalp, eyes, oral mucosa, genital area, and nail, as family members may develop melanoma in their early teens.
At Mayo Clinic, FAMMM patients with a confirmed mutation and family history of pancreatic cancer are offered screening with either high-resolution pancreatic protocol CT, MRI, or endoscopic ultrasound starting at age 50 or 10 years younger than the earliest family member with pancreas cancer. They are counseled on the lack of evidence-based data to support screening, and on the limitations of our current technology to detect a lesion at a stage amenable to therapy.
Polyps are most frequent in the stomach and large intestine, are also found in the small intestine, and are least frequent in the esophagus. A biopsy will reveal them to be hamartomas; the possibility that they progress to cancer is generally considered to be low, although it has been reported multiple times in the past. Chronic diarrhea and protein-losing enteropathy are often observed. Possible collateral features include variable anomalies of ectodermal tissues, such as alopecia, atrophy of the nails, or skin pigmentation
Genetic counseling and genetic testing are used to confirm that somebody has this gene mutation. Once such a person is identified, early and regular screenings for cancer are recommended for him or her as people with Li–Fraumeni are likely to develop another primary malignancy at a future time (57% within 30 years of diagnosis).
In terms of treatment/management one should observe what signs or symptoms are present and therefore treat those as there is no other current guideline. The affected individual should be monitored for cancer of:
- Thyroid
- Breast
- Renal
A 2009 revision of the traditional Chompret criteria for screening has been proposed:
A proband who has:
- tumor belonging to the LFS tumor spectrum - soft tissue sarcoma, osteosarcoma, pre-menopausal breast cancer, brain tumor, adrenocortical carcinoma, leukemia or lung bronchoalveolar cancer - before age 46 years;
and at least one of the following:
- at least one first or second degree relative with an LFS tumour (except breast cancer if the proband has breast cancer) before age 56 years or with multiple tumours
- a proband with multiple tumours (except multiple breast tumours), two of which belong to the LFS tumour spectrum and the first of which occurred before age 46 years
- a proband who is diagnosed with adrenocortical carcinoma or choroid plexus tumour, irrespective of family history
Treatment:wide excision taking 8mm normal tissue as this is locally malignant. For recurrence radiotherapy is given
Because Cowden syndrome can be difficult to diagnose, the exact prevalence is unknown; however, it probably occurs in at least 1 in 200,000 people.
A 2010 review of 211 patients (21 from one center, and the remaining 190 from the external literature) studied the risks for cancer and Lhermitte-Duclos disease in Cowden syndrome patients.
The cumulative lifetime (age 70 years) risks were 89% for any cancer diagnosis (95% confidence interval (CI) = 80%,95%), breast cancer [female] 81% (CI = 66%,90%), LDD 32% (CI = 19%,49%), thyroid cancer 21% (CI = 14%,29%), endometrial cancer 19% (CI = 10%,32%) and renal cancer 15% (CI = 6%,32%). A previously unreported increased lifetime risk for colorectal cancer was identified (16%, CI = 8%,24%). Male CS patients had fewer cancers diagnosed than female patients and often had cancers not classically associated with CS.
AGID is diagnosed with a complete medical history, exam of patients motility and with special blood tests looking for autoantibodies consistent with neurologic autoimmunity. Blood tests included evaluations of immunofluorescence (neuronal nuclear and cytoplasmic antibodies), radioimmunoprecipitation assays (neuronal and muscle plasma membrane cation channel antibodies), and enzyme-linked immunosorbent assay (muscle striational antibodies). A finding, along with medical history, of ganglionic neuronal acetylcholine receptor and N-type voltage-gated calcium channel autoantibodies in the blood stream would result in a medically acceptable diagnosis of AGID.
Often AGID is a symptom of other problems, including colon cancer, lupus, lung, breast, or ovarian carcinoma or thymoma. or other diseases. Irritable bowel syndrome (IBS) is the most recognized form of AGID.
Though the outcome for individuals with either form of the tetrasomy is highly variable, mosaic individuals consistently experience a more favourable outcome than those with the non-mosaic form. Some affected infants die shortly after birth, particularly those with the non-mosaic tetrasomy. Many patients do not survive to reproductive age, while others are able to function relatively normally in a school or workplace setting. Early diagnosis and intervention has been shown to have a strong positive influence on the prognosis.
A review from 2000 stated that life expectancy was reduced because of a tendency to develop cancer relatively early as well as deaths due to infections related to immunodeficiency.
Children with blue diaper syndrome are put on restricted diets. This is in effort to reduce kidney damage. Restrictions include: calcium, protein, vitamin D, and tryptophan. Calcium is restricted to help prevent kidney damage. Examples of food with high levels of tryptophan include turkey and warm milk.
Antibiotics may be used to control or eliminate particular intestinal bacteria. Nicotinic acid may be used to control intestinal infections.
Genetic counseling can also be beneficial, as well as taking part in clinical trials.