Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis rests on the microscopic identification of larvae (rhabditiform and occasionally filariform) in the stool or duodenal fluid. Examination of many samples may be necessary, and not always sufficient, because direct stool examination is relatively insensitive, with a single sample only able to detect larvae in about 25% of cases. It can take 4 weeks from initial infection to the passage of larvae in the stool.
The stool can be examined in wet mounts:
- directly
- after concentration (formalin-ethyl acetate)
- after recovery of the larvae by the Baermann funnel technique
- after culture by the Harada-Mori filter paper technique
- after culture in agar plates
Culture techniques are the most sensitive, but are not routinely available in the West. In the UK, culture is available at either of the Schools of Tropical Medicine in Liverpool or London. Direct examination must be done on stool that is freshly collected and not allowed to cool down, because hookworm eggs hatch on cooling and the larvae are very difficult to distinguish from Strongyloides.
Finding Strongyloides in the stool is negative in up to 70% of tests. It is important to undergo frequent stool sampling as well as duodenal biopsy if a bad infection is suspected. The duodenal fluid can be examined using techniques such as the Enterotest string or duodenal aspiration. Larvae may be detected in sputum from patients with disseminated strongyloidiasis.
Given the poor ability of stool examination to diagnose strongyloides, detecting antibodies by ELISA can be useful. Serology can cross-react with other parasites, remain positive for years after successful treatment or be falsely negative in immunocompromised patients. Infected patients will also often have an elevated eosinophil count, with an average of absolute eosinophil count of 1000 in one series. The combination of clinical suspicion, a positive antibody and a peripheral eosinophilia can be strongly suggestive of infection.
Antibody detection can be useful to indicate schistosome infection in people who have traveled to areas where schistosomiasis is common and in whom eggs cannot be demonstrated in fecal or urine specimens. Test sensitivity and specificity vary widely among the many tests reported for the serologic diagnosis of schistosomiasis and are dependent on both the type of antigen preparations used (crude, purified, adult worm, egg, cercarial) and the test procedure.
At CDC, a combination of tests with purified adult worm antigens is used for antibody detection. All serum specimens are tested by FAST-ELISA using "S. mansoni" adult microsomal antigen (MAMA). A positive reaction (greater than 9 units/µl serum) indicates infection with "Schistosoma" species. Sensitivity for "S. mansoni" infection is 99 percent, 95 percent for "S. haematobium" infection, and less than 50 percent for "S. japonicum" infection. Specificity of this assay for detecting schistosome infection is 99 percent. Because test sensitivity with the FAST-ELISA is reduced for species other than "S. mansoni", immunoblots of the species appropriate to the patient's travel history are also tested to ensure detection of "S. haematobium" and "S. japonicum" infections. Immunoblots with adult worm microsomal antigens are species-specific and so a positive reaction indicates the infecting species. The presence of antibody is indicative only of schistosome infection at some time and cannot be correlated with clinical status, worm burden, egg production, or prognosis. Where a person has traveled can help determine what "Schistosoma" species to test for by immunoblot.
In 2005, a field evaluation of a novel handheld microscope was undertaken in Uganda for the diagnosis of intestinal schistosomiasis by a team led by Russell Stothard from the Natural History Museum of London, working with the Schistosomiasis Control Initiative, London.
Examination of blood samples will allow identification of microfilariae of "M. perstans", and "M. ozzardi" based. This diagnosis can be made on the basis of the morphology of the nuclei distribution in the tails of the microfilariae. The blood sample can be a thick smear, stained with Giemsa or hematoxylin and eosin. For increased sensitivity, concentration techniques can be used. These include centrifugation of the blood sample lyzed in 2% formalin (Knott's technique), or filtration through a Nucleopore membrane.
Examination of skin snips will identify microfilariae of "Onchocerca volvulus" and "M. streptocerca". Skin snips can be obtained using a corneal-scleral punch, or more simply a scalpel and needle. It is important that the sample be allowed to incubate for 30 minutes to 2 hours in saline or culture medium and then examined. This allows for the microfilariae that would have been in the tissue to migrate to the liquid phase of the specimen. Additionally, to differentiate the skin-dwelling filariae "M. streptocerca" and "Onchocerca volvulus", a nested polymerase chain reaction (PCR) assay was developed using small amounts of parasite material present in skin biopsies.
For medical purposes, the exact number of helminth eggs is less important and therefore most diagnoses are made simply by identifying the appearance of the worm or eggs in feces. Due to the large quantity of eggs laid, physicians can diagnose using only one or two fecal smears. The Kato technique (also called the Kato-Katz technique) is a laboratory method for preparing human stool samples prior to searching for parasite eggs. Eggs per gram is a laboratory test that determines the number of eggs per gram of feces in patients suspected of having a parasitological infection, such as schistosomiasis.
Diagnosis of infection is confirmed by the identification of eggs in stools. Eggs of "S. mansoni" are approximately 140 by 60 µm in size, and have a lateral spine. The diagnosis is improved by the use of the Kato-Katz technique (a semi-quantitative stool examination technique). Other methods that can be used are enzyme-linked immunosorbent assay (ELISA), circumoval precipitation test, and alkaline phosphatase immunoassay.
Microscopic identification of eggs in stool or urine is the most practical method for diagnosis. Stool examination should be performed when infection with "S. mansoni" or "S. japonicum" is suspected, and urine examination should be performed if "S. haematobium" is suspected. Eggs can be present in the stool in infections with all "Schistosoma" species. The examination can be performed on a simple smear (1 to 2 mg of fecal material). Since eggs may be passed intermittently or in small amounts, their detection will be enhanced by repeated examinations and/or concentration procedures. In addition, for field surveys and investigational purposes, the egg output can be quantified by using the Kato-Katz technique (20 to 50 mg of fecal material) or the Ritchie technique. Eggs can be found in the urine in infections with "S. haematobium" (recommended time for collection: between noon and 3 PM) and with "S. japonicum". Quantification is possible by using filtration through a nucleopore filter membrane of a standard volume of urine followed by egg counts on the membrane. Tissue biopsy (rectal biopsy for all species and biopsy of the bladder for "S. haematobium") may demonstrate eggs when stool or urine examinations are negative.
Lumbar puncture should always be done is cases of suspected meningitis. In cases of eosiniphilc meningitis it will rarely produce worms even when they are present in the CSF, because they tend to cling to the end of nerves. Larvae are present in the CSF in only 1.9-10% of cases. However, as a case of eosiniphilic meningitis progresses, intracranial pressure and eosiniphil counts should rise. Increased levels of eosinophils in the CSF is a trademark of the eosiniphilic meningitis.
In patients with elevated eosiniphils, serology can be used to confirm a diagnosis of Angiostrongylias rather than infection with another parasite. There are a number of immunoassays that can aid in diagnosis, however serologic testing is available in few labs in the endemic area, and is frequently too non-specific. Some cross reactivity has been reported between "A. cantonensis" and trichinosis, making diagnosis less specific.
The most definitive diagnosis always arises from the identification of larvae found in the CSF or eye, however due to this rarity a clinical diagnosis based on the above tests is most likely.
For the purpose of setting treatment standards and reuse legislation, it is important to be able to determine the amount of helminth eggs in an environmental sample with some accuracy. The detection of viable helminth eggs in samples of wastewater, sludge or fresh feces (as a diagnostic tool for the infection helminthiasis) is not straight forward. In fact, many laboratories in developing countries lack the right equipment or skilled staff required to do so. An important step in the analytical methods is usually the concentration of the eggs in the sample, especially in the case of wastewater samples. A concentration step may not be required in samples of dried feces, e.g. samples collected from urine-diverting dry toilets.
The standard method for diagnosing necatoriasis is through identification of "N. americanus" eggs in a fecal sample using a microscope. Eggs can be difficult to visualize in a lightly infected sample so a concentration method is generally used such as flotation or sedimentation. However, the eggs of "A. duodenale" and "N. americanus" cannot be distinguished; thus, the larvae must be examined to identify these hookworms. Larvae cannot be found in stool specimens unless the specimen was left at ambient temperature for a day or more.
The most common technique used to diagnose a hookworm infection is to take a stool sample, fix it in 10% formalin, concentrate it using the formalin-ethyl acetate sedimentation technique, and then create a wet mount of the sediment for viewing under a microscope.
Tender or enlarged inguinal lymph nodes or swelling in the extremities can alert physicians or public health officials to infection.
With appropriate laboratory equipment, microscopic examination of differential morphological features of microfilariae in stained blood films can aid diagnosis—in particular the examination of the tail portion, the presence of a sheath, and the size of the cephalic space. Giemsa staining will uniquely stain "B. malayi" sheath pink. However, blood films can prove difficult given the nocturnal periodicity of some forms of "B. malayi".
PCR based assays are highly sensitive and can be used to monitor infections both in the human and the mosquito vector. However, PCR assays are time-consuming, labor-intensive and require laboratory equipment. Lymphatic filariasis mainly affects the poor, who live in areas without such resources.
The ICT antigen card test is widely used in the diagnosis of "W. bancrofti", but commercial antigens of "B. malayi" have not been historically widely available. However, new research developments have identified a recombinant antigen (BmR1) that is both specific and sensitive in the detection of IgG4 antibodies against "B. malayi" and "B. timori" in ELISA and immunochromatographic rapid dipstick (Brugia Rapid) test. However, it appears that immunoreactivity to this antigen is variable in individuals infected with other filarial nematodes. This research has led to the development of two new rapid immunochromatographic IgG4 cassette tests – WB rapid and panLF rapid – which detect bancroftian filariasis and all three species of lymphatic filariasis, respectively, with high sensitivity and selectivity.
Prevention can be partially achieved through limiting contact with vectors through the use of DEET and other repellents, but due to the predominantly relatively mild symptoms and the infection being generally asymptomatic, little has formally been done to control the disease.
Sparganosis is typically diagnosed following surgical removal of the worms, although the infection may also be diagnosed by identification of eosinophilia or identification of the parasite in a tissue specimen. If such biopsy and excision procedures are not feasible, the antisparganum ELISA test may be used. In theory, a pre-operative diagnosis could be made by identification of exposure history and a painful, migratory, subcutaneous nodule. Sparganosis usually presents as a single nodule, while other cestode infections such as cysticercosis typically present as multiple nodules. Preoperative diagnosis, however, is rare.
CT and MRI scans are especially useful for diagnosis of cerebral sparganosis, as they reveal lesions in the brain. Through a retrospective analysis of 25 cases of cerebral sparganosis from 2000 to 2006, Song et al. found a number of characteristic signs that could be used in the future to diagnose cerebral sparganosis without performing an excision or tissue biopsy. The most characteristic finding was the "tunnel sign" on MRI images, showing the migrating track of the worm, while the most common finding was multiple conglomerated ring-shaped enhancements, seen as bead-shaped, usually with 3 to 6 rings. These findings led Song et al. to suggest that clinical history, ELISA, and either MRI or CT scans could be sufficient to make a sparganosis diagnosis. These lesions, however, are sometimes mistaken for tuberculosis lesions. In one case cerebral sparganosis was not diagnosed for four years, during which scans showed a cluster of rings moving from the right to the left side of the brain; ultimately the worm was found on biopsy.
Pinworm infection cannot be totally prevented under most circumstances. This is due to the prevalence of the parasite and the ease of transmission through soiled night clothes, airborne eggs, contaminated furniture, toys and other objects. Infection may occur in the highest strata of society, where hygiene and nutritional status are typically high. The stigma associated with pinworm infection is hence considered a possible over-emphasis. Counselling is sometimes needed for upset parents that have discovered their children are infected, as they may not realize how prevalent the infection is.
Preventative action revolves around personal hygiene and the cleanliness of the living quarters. The "rate" of reinfection can be reduced through hygienic measures, and this is recommended especially in recurring cases.
The main measures are keeping fingernails short, and washing and scrubbing hands and fingers carefully, especially after defecation and before meals. Under ideal conditions, bed covers, sleeping garments, and hand towels should be changed daily. Simple laundering of clothes and linen disinfects them. Children should wear gloves while asleep, and the bedroom floor should be kept clean. Food should be covered to limit contamination with dust-borne parasite eggs. Household detergents have little effect on the viability of pinworm eggs, and cleaning the bathroom with a damp cloth moistened with an antibacterial agent or bleach will merely spread the still-viable eggs. Similarly, shaking clothes and bed linen will detach and spread the eggs.
Diagnosis depends on finding the eggs or the adult pinworms. Individual eggs are invisible to the naked eye, but they can be seen using a low-power microscope. On the other hand, the light-yellowish thread-like adult pinworms are clearly visually detectable, usually during the night when they move near the anus, or on toilet paper. Transparent adhesive tape (e.g. Scotch Tape) applied on the anal area will pick up deposited eggs, and diagnosis can be made by examining the tape with a microscope. This test is most successful if done every morning for several days, because the females do not lay eggs every day, and the number of eggs vary.
Pinworms do not lay eggs in the feces, but sometimes eggs are deposited in the intestine. As such, routine examination of fecal material gives a positive diagnosis in only 5 to 15% of infected subjects, and is therefore of little practical diagnostic use. In a heavy infection, female pinworms may adhere to stools that pass out through the anus, and they may thus be detected on the surface on the stool. Adult pinworms are occasionally seen during colonoscopy. On a microscopic level, pinworms have an identifying feature of alae (i.e., protruding ridges) running the length of the worm.
Identification of microfilariae by microscopic examination is a practical diagnostic procedure. Examination of blood samples will allow identification of microfilariae of "Loa loa". It is important to time the blood collection with the known periodicity of the microfilariae (between 10 am and 2 pm). The blood sample can be a thick smear, stained with Giemsa or haematoxylin and eosin (see staining). For increased sensitivity, concentration techniques can be used. These include centrifugation of the blood sample lyzed in 2% formalin (Knott's technique), or filtration through a Nucleopore membrane.
Antigen detection using an immunoassay for circulating filarial antigens constitutes a useful diagnostic approach, because microfilaremia can be low and variable. Interestingly, the Institute for Tropical Medicine reports that no serologic diagnostics are available. While this was once true, and many of recently developed methods of Antibody detection are of limited value—because substantial antigenic cross reactivity exists between filaria and other parasitic worms (helminths), and a positive serologic test does not necessarily distinguish between infections—up and coming serologic tests that are highly specific to "Loa loa" were furthered in 2008. They have not gone point-of-care yet, but show promise for highlighting high-risk areas and individuals with co-endemic loiasis and onchocerciasis. Specifically, Dr. Thomas Nutman and colleagues at the National Institutes of Health have described the a luciferase immunoprecipitation assay (LIPS) and the related QLIPS (quick version). Whereas a previously described LISXP-1 ELISA test had a poor sensitivity (55%), the QLIPS test is both practical, as it requires only a 15 minutes incubation, and has high sensitivity and specificity (97% and 100%, respectively). No report on the distribution status of LIPS or QLIPS testing is available, but these tests would help to limit complications derived from mass ivermectin treatment for onchocerciasis or dangerous strong doses of diethylcarbamazine for loiasis alone (as pertains to individual with high "Loa loa" microfilarial loads).
Physically, Calabar swellings (see image; needs image) are the primary tool for diagnosis. Identification of adult worms is possible from tissue samples collected during subcutaneous biopsies. Adult worms migrating across the eye are another potential diagnostic, but the short timeframe for the worm's passage through the conjunctiva makes this observation less common.
In the past, health care providers use a provocative injection of "Dirofilaria immitis" as a skin test antigen for filariasis diagnosis. If the patient was infected, the extract would cause an artificial allergic reaction and associated Calabar swelling similar to that caused, in theory, by metabolic products of the worm or dead worms.
Blood tests to reveal microfilaremia are useful in many, but not all cases, as one third of loiasis patients are amicrofilaremic. By contrast, eosinophilia is almost guaranteed in cases of loiasis, and blood testing for eosinophil fraction may be useful.
Various concentration methods are applied: membrane filter, Knott's concentration method, and sedimentation technique.
Polymerase chain reaction (PCR) and antigenic assays, which detect circulating filarial antigens, are also available for making the diagnosis. The latter are particularly useful in amicrofilaraemic cases. Spot tests for antigen are far more sensitive, and allow the test to be done anytime, rather in the late hours.
Lymph node aspirate and chylous fluid may also yield microfilariae. Medical imaging, such as CT or MRI, may reveal "filarial dance sign" in the chylous fluid; X-ray tests can show calcified adult worms in lymphatics. The DEC provocation test is performed to obtain satisfying numbers of parasites in daytime samples. Xenodiagnosis is now obsolete, and eosinophilia is a nonspecific primary sign.
The drug of choice for the treatment of uncomplicated strongyloidiasis is ivermectin. Ivermectin does not kill the "Strongyloides" larvae, only the adult worms, therefore repeat dosing may be necessary to properly eradicate the infection. There is an auto-infective cycle of roughly two weeks in which Ivermectin should be re-administered however additional dosing may still be necessary as it will not kill "Strongyloides" in the blood or larvae deep within the bowels or diverticula. Other drugs that are effective are albendazole and thiabendazole (25 mg/kg twice daily for 5 days—400 mg maximum (generally)). All patients who are at risk of disseminated strongyloidiasis should be treated. The optimal duration of treatment for patients with disseminated infections is not clear.
Treatment of strongyloidiasis can be difficult and "Strongyloides" has been known to live in individuals for decades; even after treatment. Continued treatment is thus necessary even if symptoms resolve.
Because of the high cost of Stromectol, the veterinary formula Ivomec can be used. Government programs are needed to help citizens finance lifelong medication.
Clothes and sheets must be washed with enzyme washing powder and dried on hot daily.
The clinical aspects of ancylostomiasis were first described in Europe as "miner's anaemia". During the construction of the Gotthard Tunnel in Switzerland (1871–1881), a large number of miners suffered from severe anaemia of unknown cause. Medical investigations let to the understanding that it was caused by "Ancylostoma duodenale" (favoured by high temperatures and humidity) and to "major advances in parasitology, by way of research into the aetiology, epidemiology and treatment of ancylostomiasis".
Hookworms still account for high proportion of debilitating disease in the tropics and 50-60,000 deaths per year can be attributed to this disease.
Systemic mycoses due to opportunistic pathogens are infections of patients with immune deficiencies who would otherwise not be infected. Examples of immunocompromised conditions include AIDS, alteration of normal flora by antibiotics, immunosuppressive therapy, and metastatic cancer. Examples of opportunistic mycoses include Candidiasis, Cryptococcosis and Aspergillosis.
Most immunodiagnostic tests will detect infection and have a sensitivity above 90% during all stages of the diseases. In addition antibody concentration quickly drops post treatment and no antibodies are present one year after treatment, which makes it a very good diagnostic method. In humans, diagnosis of fasciolosis is usually achieved parasitologically by findings the fluke eggs in stool, and immunologically by ELISA and Western blot. Coprological examinations of stool alone are generally not adequate because infected humans have important clinical presentations long before eggs are found in the stools.
Moreover, in many human infections, the fluke eggs are often not found in the faeces, even after multiple faecal examinations. Furthermore, eggs of "F. hepatica", "F. gigantica" and "Fasciolopsis buski" are morphologically indistinguishable. Therefore, immunonological methods such ELISA and enzyme-linked immunoelectrotransfer blot, also called Western blot, are the most important methods in diagnosis of "F. hepatica" infection. These immunological tests are based on detection of species-specific antibodies from sera. The antigenic preparations used have been primarily derived from extracts of excretory/secretory products from adult worms, or with partially purified fractions. Recently, purified native and recombinant antigens have been used, e.g. recombinant "F. hepatica" cathepsin L-like protease.
Methods based on antigen detection (circulating in serum or in faeces) are less frequent. In addition, biochemical and haematological examinations of human sera support the exact diagnosis (eosinophilia, elevation of liver enzymes). Ultrasonography and xray of the abdominal cavity, biopsy of liver, and gallbladder punctuate can also be used (ref: US-guided gallbladder aspiration:
a new diagnostic method for biliary fascioliasis. A. Kabaalioglu, A. Apaydin, T. Sindel, E. Lüleci. Eur. Radiol. 9, 880±882 (1999) . False fasciolosis (pseudofasciolosis) refers to the presence of eggs in the stool resulting not from an actual infection but from recent ingestion of infected livers containing eggs. This situation (with its potential for misdiagnosis) can be avoided by having the patient follow a liver-free diet several days before a repeat stool examination.
In animals, intravital diagnosis is based predominantly on faeces examinations and immunological methods. However, clinical signs, biochemical and haematological profile, season, climate conditions, epidemiology situation, and examinations of snails must be considered. Similarly to humans, faeces examinations are not reliable. Moreover, the fluke eggs are detectable in faeces 8–12 weeks post-infection. In spite of that fact, faecal examination is still the only used diagnostic tool in some countries. While coprological diagnosis of fasciolosis is possible from 8- to 12-week post-infection (WPI), "F. hepatica" specific-antibodies are recognized using ELISA or Western blot after 2-4 week post-infection. Therefore, these methods provide early detection of the infection.
Education, improved sanitation, and controlled disposal of human feces are critical for prevention. Nonetheless, wearing shoes in endemic areas helps reduce the prevalence of infection.
Keeping the skin clean and dry, as well as maintaining good hygiene, will help larger topical mycoses. Because fungal infections are contagious, it is important to wash after touching other people or animals. Sports clothing should also be washed after use.
A stool ova and parasites exam reveals the presence of typical whipworm eggs. Typically, the Kato-Katz thick-smear technique is used for identification of the "Trichuris trichiura" eggs in the stool sample.
Although colonoscopy is not typically used for diagnosis, as the adult worms can be overlooked, especially with imperfect colon, there have been reported cases in which colonoscopy has revealed adult worms. Colonoscopy can directly diagnose trichuriasis by identification of the threadlike form of worms with an attenuated, whip-like end. Colonoscopy has been shown to be a useful diagnostic tool, especially in patients infected with only a few male worms and with no eggs presenting in the stool sample.
Trichuriasis can be diagnosed when "T. trichiura" eggs are detected in stool examination. Eggs will appear barrel-shaped and unembryonated, having bipolar plugs and a smooth shell. Rectal prolapse can be diagnosed easily using defecating proctogram and is one of many methods for imaging the parasitic infection. Sigmoidoscopys show characteristic white bodies of adult worms hanging from inflamed mucosa ("coconut cake rectum").
Specific helminths can be identified through microscopic examination of their eggs (ova) found in faecal samples. The number of eggs is measured in units of eggs per gram. However, it does not quantify mixed infections, and in practice, is inaccurate for quantifying the eggs of schistosomes and soil-transmitted helmiths. Sophisticated tests such as serological assays, antigen tests, and molecular diagnosis are also available; however, they are time-consuming, expensive and not always reliable.
A blood smear is a simple and fairly accurate diagnostic tool, provided the blood sample is taken during the period in the day when the juveniles are in the peripheral circulation. Technicians analyzing the blood smear must be able to distinguish between "W. bancrofti" and other parasites potentially present.
A polymerase chain reaction test can also be performed to detect a minute fraction, as little as 1 pg, of filarial DNA.
Some infected people do not have microfilariae in their blood. As a result, tests aimed to detect antigens from adult worms can be used.
Ultrasonography can also be used to detect the movements and noises caused by the movement of adult worms.
Dead, calcified worms can be detected by X-ray examinations.