Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Antibody (Ig) ELISAs are used to detect historical BVDV infection; these tests have been validated in serum, milk and bulk milk samples. Ig ELISAs do not diagnose active infection but detect the presence of antibodies produced by the animal in response to viral infection. Vaccination also induces an antibody response, which can result in false positive results, therefore it is important to know the vaccination status of the herd or individual when interpreting results. A standard test to assess whether virus has been circulating recently is to perform an Ig ELISA on blood from 5–10 young stock that have not been vaccinated, aged between 9 and 18 months. A positive result indicates exposure to BVDV, but also that any positive animals are very unlikely to be PI animals themselves. A positive result in a pregnant female indicates that she has previously been either vaccinated or infected with BVDV and could possibly be carrying a PI fetus, so antigen testing of the newborn is vital to rule this out. A negative antibody result, at the discretion of the responsible veterinarian, may require further confirmation that the animal is not in fact a PI.
At a herd level, a positive Ig result suggests that BVD virus has been circulating or the herd is vaccinated. Negative results suggest that a PI is unlikely however this naïve herd is in danger of severe consequences should an infected animal be introduced. Antibodies from wild infection or vaccination persist for several years therefore Ig ELISA testing is more valuable when used as a surveillance tool in seronegative herds.
Antigen ELISA and rtPCR are currently the most frequently performed tests to detect virus or viral antigen. Individual testing of ear tissue tag samples or serum samples is performed. It is vital that repeat testing is performed on positive samples to distinguish between acute, transiently infected cattle and PIs. A second positive result, acquired at least three weeks after the primary result, indicates a PI animal. rtPCR can also be used on bulk tank milk (BTM) samples to detect any PI cows contributing to the tank. It is reported that the maximum number of contributing cows from which a PI can be detected is 300.
Definitive diagnosis is usually made at a reference laboratory with advanced biocontainment capabilities. The findings of laboratory investigation vary somewhat between the viruses but in general there is a decrease in the total white cell count (particularly the lymphocytes), a decrease in the platelet count, an increase in the blood serum liver enzymes, and reduced blood clotting ability measured as an increase in both the prothrombin (PT) and activated partial thromboplastin times (PTT). The hematocrit may be elevated. The serum urea and creatine may be raised but this is dependent on the hydration status of the patient. The bleeding time tends to be prolonged.
Electron microscopy can reveal the bullet-shaped rhabdovirus, but is not
adequate for definitive diagnosis.
The Manual or Diagnostic for Aquatic Animals, 2006, is the standard
reference for definitive tests. In most cases, cell culturization
is recommended for surveillance, with antibody tests and reverse transcription
polymerase chain reaction (RT-PCR) and genetic sequencing and comparison
for definitive confirmation and genotype classification.
Virus neutralisation is another important method of diagnosis, especially for carrier fish.
Viral disease is usually detected by clinical presentation, for instance severe muscle and joint pains preceding fever, or skin rash and swollen lymph glands.
Laboratory investigation is not directly effective in detecting viral infections, because they do not themselves increase the white blood cell count. Laboratory investigation may be useful in diagnosing associated bacterial infections, however.
Viral infections are commonly of limited duration, so treatment usually consists in reducing the symptoms; antipyretic and analgesic drugs are commonly prescribed.
Antigen detection, polymerase chain reaction assay, virus isolation, and serology can be used to identify adenovirus infections. Adenovirus typing is usually accomplished by hemagglutination-inhibition and/or neutralization with type-specific antisera. Since adenovirus can be excreted for prolonged periods, the presence of virus does not necessarily mean it is associated with disease.
With the exception of yellow fever vaccine neither vaccines nor experimental vaccines are readily available. Prophylactic (preventive) ribavirin may be effective for some bunyavirus and arenavirus infections (again, available only as IND).
VHF isolation guidelines dictate that all VHF patients (with the exception of dengue patients) should be cared for using strict contact precautions, including hand hygiene, double gloves, gowns, shoe and leg coverings, and faceshield or goggles. Lassa, CCHF, Ebola, and Marburg viruses may be particularly prone to nosocomial (hospital-based) spread. Airborne precautions should be utilized including, at a minimum, a fit-tested, HEPA filter-equipped respirator (such as an N-95 mask), a battery-powered, air-purifying respirator, or a positive pressure supplied air respirator to be worn by personnel coming within 1,8 meter (six feet) of a VHF patient. Multiple patients should be cohorted (sequestered) to a separate building or a ward with an isolated air-handling system. Environmental decontamination is typically accomplished with hypochlorite (e.g. bleach) or phenolic disinfectants.
Preliminary diagnosis involves histopathological examination,
observing tissues through a microscope. Most tissue changes can be observed
as minor to major necrosis (cell death) in the liver, kidneys, spleen, and
skeletal muscle. The hematopoietic (blood-forming) areas of the kidney and
spleen are the initial area of infection, and should show necrosis.
The gill may have thickened lamellae, and the liver may have pyknotic nuclei.
Skeletal muscle accumulates blood but does not suffer much damage.
Neonatal sepsis of the newborn is an infection that has spread through the entire body. The inflammatory response to this systematic infection can be as serious as the infection itself. In infants that weigh under 1500 g, sepsis is the most common cause of death. Three to four percent of infants per 1000 births contract sepsis. The mortality rate from sepsis is near 25%. Infected sepsis in an infant can be identified by culturing the blood and spinal fluid and if suspected, intravenous antibiotics are usually started. Lumbar puncture is controversial because in some cases it has found not to be necessary while concurrently, without it estimates of missing up to one third of infants with meningitis is predicted.
The CDC states that PCR testing from a single blood draw is not sufficiently sensitive for "B." "henselae" testing, and can result in high false negative rates due to a small sample volume and levels below the limit of molecular detection.
"Bartonella" spp. are fastidious, slow-growing bacteria that are difficult to grow using traditional solid agar plate culture methods due to complex nutritional requirements and potentially a low number of circulating bacteria. This conventional method of culturing "Bartonella" spp. from blood inoculates plated directly onto solid agar plates requires an extended incubation period of 21 days due to the slow growth rate.
Symptoms and the isolation of the virus pathogen the upper respiratory tract is diagnostic. Virus identification is specific immunologic methods and PCR. The presence of the virus can be rapidly confirmed by the detection of the virus antigen. The methods and materials used for identifying the RSV virus has a specificity and sensitivity approaching 85% to 95%. Not all studies confirm this sensitivity. Antigen detection has comparatively lower sensitivity rates that approach 65% to 75%.
"Bartonella" growth rates improve when cultured in an enrichment inoculation step in a liquid insect-based medium such as "Bartonella" α-Proteobacteria Growth Medium (BAPGM) or Schneider’s Drosophila-based insect powder medium. Several studies have optimized the growing conditions of "Bartonella" spp. cultures in these liquid media, with no change in bacterial protein expressions or host interactions "in vitro". Insect-based liquid media supports the growth and co-culturing of at least seven "Bartonella" species, reduces bacterial culturing time and facilitates PCR detection and isolation of "Bartonella" spp. from animal and patient samples. Research shows that DNA may be detected following direct extraction from blood samples and become negative following enrichment culture, thus PCR is recommended after direct sample extraction and also following incubation in enrichment culture. Several studies have successfully optimized sensitivity and specificity by using PCR amplification (pre-enrichment PCR) and enrichment culturing of blood draw samples, followed by PCR (post-enrichment PCR) and DNA sequence identification.
Safe and effective adenovirus vaccines were developed for adenovirus serotypes 4 and 7, but were available only for preventing ARD among US military recruits, and production stopped in 1996. Strict attention to good infection-control practices is effective for stopping transmission in hospitals of adenovirus-associated disease, such as epidemic keratoconjunctivitis. Maintaining adequate levels of chlorination is necessary for preventing swimming pool-associated outbreaks of adenovirus conjunctivitis.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
Diagnosis of FVR is usually by clinical signs, especially corneal ulceration. Definitive diagnosis can be done by direct immunofluorescence or virus isolation. However, many healthy cats are subclinical carriers of feline herpes virus, so a positive test for FHV-1 does not necessarily indicate that signs of an upper respiratory tract infection are due to FVR. Early in the course of the disease, histological analysis of cells from the tonsils, nasal tissue, or nictitating membrane (third eyelid) may show inclusion bodies (a collection of viral particles) within the nucleus of infected cells.
The differential diagnosis in a case of suspected human rabies may initially include any cause of encephalitis, in particular infection with viruses such as herpesviruses, enteroviruses, and arboviruses such as West Nile virus. The most important viruses to rule out are herpes simplex virus type one, varicella zoster virus, and (less commonly) enteroviruses, including coxsackieviruses, echoviruses, polioviruses, and human enteroviruses 68 to 71.
New causes of viral encephalitis are also possible, as was evidenced by the 1999 outbreak in Malaysia of 300 cases of encephalitis with a mortality rate of 40% caused by Nipah virus, a newly recognized paramyxovirus. Likewise, well-known viruses may be introduced into new locales, as is illustrated by the outbreak of encephalitis due to West Nile virus in the eastern United States. Epidemiologic factors, such as season, geographic location, and the patient's age, travel history, and possible exposure to bites, rodents, and ticks, may help direct the diagnosis.
SuHV1 can be used to analyze neural circuits in the central nervous system (CNS). For this purpose the attenuated (less virulent) Bartha SuHV1 strain is commonly used and is employed as a retrograde and anterograde transneuronal tracer. In the retrograde direction, SuHV1-Bartha is transported to a neuronal cell body via its axon, where it is replicated and dispersed throughout the cytoplasm and the dendritic tree. SuHV1-Bartha released at the synapse is able to cross the synapse to infect the axon terminals of synaptically connected neurons, thereby propagating the virus; however, the extent to which non-synaptic transneuronal transport may also occur is uncertain. Using temporal studies and/or genetically engineered strains of SuHV1-Bartha, second, third, and higher order neurons may be identified in the neural network of interest.
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
People infected with CMV develop antibodies to it, initially IgM later IgG indicating current infection and immunity respectively. If the virus is detected in the blood, saliva, urine or other body tissues, it means that the person has an active infection.
When infected with CMV, most women have no symptoms, but some may have symptoms resembling mononucleosis. Women who develop a mononucleosis-like illness during pregnancy should consult their medical provider.
The Centers for Disease Control and Prevention (CDC) does not recommend routine maternal screening for CMV infection during pregnancy because there is no test that can definitively rule out primary CMV infection during pregnancy. Women who are concerned about CMV infection during pregnancy should practice CMV prevention measures.Considering that the CMV virus is present in saliva, urine, tears, blood, mucus, and other bodily fluids, frequent hand washing with soap and water is important after contact with diapers or oral secretions, especially with a child who is in daycare or interacting with other young children on a regular basis.
A diagnosis of congenital CMV infection can be made if the virus is found in an infant's urine, saliva, blood, or other body tissues during the first week after birth. Antibody tests cannot be used to diagnose congenital CMV; a diagnosis can only be made if the virus is detected during the first week of life. Congenital CMV cannot be diagnosed if the infant is tested more than one week after birth.
Visually healthy infants are not routinely tested for CMV infection although only 10–20% will show signs of infection at birth though up to 80% may go onto show signs of prenatal infection in later life. If a pregnant woman finds out that she has become infected with CMV for the first time during her pregnancy, she should have her infant tested for CMV as soon as possible after birth.
A viral disease (or viral infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions)
attach to and enter susceptible cells.
Rabies can be difficult to diagnose, because, in the early stages, it is easily confused with other diseases or with aggressiveness. The reference method for diagnosing rabies is the fluorescent antibody test (FAT), an immunohistochemistry procedure, which is recommended by the World Health Organization (WHO). The FAT relies on the ability of a detector molecule (usually fluorescein isothiocyanate) coupled with a rabies-specific antibody, forming a conjugate, to bind to and allow the visualisation of rabies antigen using fluorescent microscopy techniques. Microscopic analysis of samples is the only direct method that allows for the identification of rabies virus-specific antigen in a short time and at a reduced cost, irrespective of geographical origin and status of the host. It has to be regarded as the first step in diagnostic procedures for all laboratories. Autolysed samples can, however, reduce the sensitivity and specificity of the FAT. The RT PCR assays proved to be a sensitive and specific tool for routine diagnostic purposes, particularly in decomposed samples or archival specimens. The diagnosis can be reliably made from brain samples taken after death. The diagnosis can also be made from saliva, urine, and cerebrospinal fluid samples, but this is not as sensitive and reliable as brain samples. Cerebral inclusion bodies called Negri bodies are 100% diagnostic for rabies infection but are found in only about 80% of cases. If possible, the animal from which the bite was received should also be examined for rabies.
Some light microscopy techniques may also be used to diagnose rabies at a tenth of the cost of traditional fluorescence microscopy techniques, allowing identification of the disease in less-developed countries.
When physical examination of the newborn shows signs of a vertically transmitted infection, the examiner may test blood, urine, and spinal fluid for evidence of the infections listed above. Diagnosis can be confirmed by culture of one of the specific pathogens or by increased levels of IgM against the pathogen.
A number of different tests are available to determine the degree of cirrhosis present. Transient elastography (FibroScan) is the test of choice, but it is expensive. Aspartate aminotransferase to platelet ratio index may be used when cost is an issue.
Most healthy people working with infants and children face no special risk from CMV infection. However, for women of child-bearing age who previously have not been infected with CMV, there is a potential risk to the developing unborn child (the risk is described above in the Pregnancy section). Contact with children who are in day care, where CMV infection is commonly transmitted among young children (particularly toddlers), may be a source of exposure to CMV. Since CMV is transmitted through contact with infected body fluids, including urine and saliva, child care providers (meaning day care workers, special education teachers, as well as mothers) should be educated about the risks of CMV infection and the precautions they can take. Day care workers appear to be at a greater risk than hospital and other health care providers, and this may be due in part to the increased emphasis on personal hygiene in the health care setting.
Recommendations for individuals providing care for infants and children:
- Employees should be educated concerning CMV, its transmission, and hygienic practices, such as handwashing, which minimize the risk of infection.
- Susceptible nonpregnant women working with infants and children should not routinely be transferred to other work situations.
- Pregnant women working with infants and children should be informed of the risk of acquiring CMV infection and the possible effects on the unborn child.
- Routine laboratory testing for CMV antibody in female workers is not specifically recommended due to its high occurrence, but can be performed to determine their immune status.
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.