Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Dozens of congenital metabolic diseases are now detectable by newborn screening tests, especially the expanded testing using mass spectrometry. This is an increasingly common way for the diagnosis to be made and sometimes results in earlier treatment and a better outcome. There is a revolutionary Gas chromatography–mass spectrometry-based technology with an integrated analytics system, which has now made it possible to test a newborn for over 100 mm genetic metabolic disorders.
Because of the multiplicity of conditions, many different diagnostic tests are used for screening. An abnormal result is often followed by a subsequent "definitive test" to confirm the suspected diagnosis.
Common screening tests used in the last sixty years:
- Ferric chloride test (turned colors in reaction to various abnormal metabolites in urine)
- Ninhydrin paper chromatography (detected abnormal amino acid patterns)
- Guthrie bacterial inhibition assay (detected a few amino acids in excessive amounts in blood) The dried blood spot can be used for multianalyte testing using Tandem Mass Spectrometry (MS/MS). This given an indication for a disorder. The same has to be further confirmed by enzyme assays, IEX-Ninhydrin, GC/MS or DNA Testing.
- Quantitative measurement of amino acids in plasma and urine
- IEX-Ninhydrin post column derivitization liquid ion-exchange chromatography (detected abnormal amino acid patterns and quantitative analysis)
- Urine organic acid analysis by gas chromatography–mass spectrometry
- Plasma acylcarnitines analysis by mass spectrometry
- Urine purines and pyrimidines analysis by gas chromatography-mass spectrometry
Specific diagnostic tests (or focused screening for a small set of disorders):
- Tissue biopsy or necropsy: liver, muscle, brain, bone marrow
- Skin biopsy and fibroblast cultivation for specific enzyme testing
- Specific DNA testing
A 2015 review reported that even with all these diagnostic tests, there are cases when "biochemical testing, gene sequencing, and enzymatic testing can neither confirm nor rule out an IEM, resulting in the need to rely on the patient's clinical course."
In most regions, galactosemia is diagnosed as a result of newborn screening, most commonly by determining the concentration of galactose in a dried blood spot. Some regions will perform a second-tier test of GALT enzyme activity on samples with elevated galactose, while others perform both GALT and galactose measurements. While awaiting confirmatory testing for classic galactosemia, the infant is typically fed a soy-based formula, as human and cow milk contains galactose as a component of lactose. Confirmatory testing would include measurement of enzyme activity in red blood cells, determination of Gal-1-P levels in the blood, and mutation testing. The differential diagnosis for elevated galactose concentrations in blood on a newborn screening result can include other disorders of galactose metabolism, including galactokinase deficiency and galactose epimerase deficiency. Enzyme assays are commonly done using fluorometric detection or older radioactively labeled substrates.
Upon clinical suspicion, diagnostic testing will often consist of measurement of amino acid concentrations in plasma, in search of a significantly elevated ornithine concentration. Measurement of urine amino acid concentrations is sometimes necessary, particularly in neonatal onset cases to identify the presence or absence of homocitrulline for ruling out ornithine translocase deficiency (hyperornithinemia, hyperammonemia, homocitrullinuria syndrome, HHH syndrome). Ornithine concentrations can be an unreliable indicator in the newborn period, thus newborn screening may not detect this condition, even if ornithine is included in the screening panel. Enzyme assays to measure the activity of ornithine aminotransferase can be performed from fibroblasts or lymphoblasts for confirmation or during the neonatal period when the results of biochemical testing is unclear. Molecular genetic testing is also an option.
In terms of the diagnosis for glycogen storage disease type III, the following tests/exams are carried out to determine if the individual has the condition:
- Biopsy (muscle or liver)
- CBC
- Ultrasound
- DNA mutation analysis (helps ascertain GSD III subtype)
In the middle of the 20th century the principal treatment for some of the amino acid disorders was restriction of dietary protein and all other care was simply management of complications. In the past twenty years, enzyme replacement, gene therapy, and organ transplantation have become available and beneficial for many previously untreatable disorders. Some of the more common or promising therapies are listed:
The differential diagnosis of glycogen storage disease type III includes GSD I, GSD IX and GSD VI. This however does not mean other glycogen storage diseases should not be distinguished as well.
Metabolic disorder screening can be done in newborns via the following methods:
- Blood test
- Skin test
- Hearing test
Histidenemia is characterized by increased levels of histidine, histamine and imidazole in blood, urine and cerebrospinal fluid. This also results in decreased levels of the metabolite urocanic acid in blood, urine, and skin cells. In Japan, neonatal screening was previously performed on infants within 1 month of birth; infants demonstrating a blood histidine level of 6 mg/dl or more underwent careful testing as suspected histidinemia cases. A typical characteristic of histidinemia is an increase in the blood histidine levels from normal levels (70-120 μM) to an elevated level (290-1420 μM). Further testing includes: observing histidine as well as imidazolepyruvic acid metabolites in the urine. However, neonatal urine testing has been discontinued in most places, with the exception of Quebec.
The most characteristic biochemical indicator of SLOS is an increased concentration of 7DHC (reduced cholesterol levels are also typical, but appear in other disorders as well). Thus, prenatally, SLOS is diagnosed upon finding an elevated 7DHC:total sterol ratio in fetal tissues, or increased levels of 7DHC in amniotic fluid. The 7DHC:total sterol ratio can be measured at 11–12 weeks of gestation by chorionic villus sampling, and elevated 7DHC in amniotic fluid can be measured by 13 weeks. Furthermore, if parental mutations are known, DNA testing of amniotic fluid or chorionic villus samples may be performed.
Amniocentesis (process of sampling amniotic fluid) and chorionic villus sampling cannot be performed until approximately 3 months into the pregnancy. Given that SLOS is a very severe syndrome, parents may want to choose to terminate their pregnancy if their fetus is affected. Amniocentesis and chorionic villus sampling leave very little time to make this decision (abortions become more difficult as the pregnancy advances), and can also pose severe risks to the mother and baby. Thus, there is a very large desire for noninvasive midgestation diagnostic tests. Examining the concentrations of sterols in maternal urine is one potential way to identify SLOS prenatally. During pregnancy, the fetus is solely responsible for synthesizing the cholesterol needed to produce estriol. A fetus with SLOS cannot produce cholesterol, and may use 7DHC or 8DHC as precursors for estriol instead. This creates 7- or 8-dehydrosteroids (such as 7-dehydroestriol), which may show up in the maternal urine. These are novel metabolites due to the presence of a normally reduced double bond at carbon 7 (caused by the inactivity of DHCR7), and may be used as indicators of SLOS. Other cholesterol derivatives which possess a double bond at the 7th or 8th position and are present in maternal urine may also be indicators of SLOS. 7- and 8-dehydropregnanetriols have been shown to be present in the urine of mothers with an affected fetus but not with an unaffected fetus, and thus are used in diagnosis. These pregnadienes originated in the fetus and traveled through the placenta before reaching the mother. Their excretion indicates that neither the placenta nor the maternal organs have necessary enzymes needed to reduce the double bond of these novel metabolites.
There is no cure for GALT deficiency, in the most severely affected patients, treatment involves a galactose free diet for life. Early identification and implementation of a modified diet greatly improves the outcome for patients. The extent of residual GALT enzyme activity determines the degree of dietary restriction. Patients with higher levels of residual enzyme activity can typically tolerate higher levels of galactose in their diets. As patients get older, dietary restriction is often relaxed. With the increased identification of patients and their improving outcomes, the management of patients with galactosemia in adulthood is still being understood.
After diagnosis, patients are often supplemented with calcium and vitamin D3. Long-term manifestations of the disease including ovarian failure in females, ataxia. and growth delays are not fully understood. Routine monitoring of patients with GALT deficiency includes determining metabolite levels (galactose 1-phosphate in red blood cells and galactitol in urine) to measure the effectiveness of and adherence to dietary therapy, ophthalmologic examination for the detection of cataracts and assessment of speech, with the possibility of speech therapy if developmental verbal dyspraxia is evident.
The diagnosis of CTD is usually suspected based on the clinical presentation of mental retardation, abnormalities in cognitive and expressive speech, and developmental delay. Furthermore, a family history of X-linked intellectual disability, developmental coordination disorder, and seizures is strongly suggestive. Initial screening of CTD involves obtaining a urine sample and measuring the ratio of creatine to creatinine. If the ratio of creatine to creatinine is greater than 1.5, then the presence of CTD is highly likely. This is because a large ratio indicates a high amount of creatine in the urine. This, in turn, indicates inadequate transport of creatine into the brain and muscle. However, the urine screening test often fails in diagnosing heterozygous females. Studies have demonstrated that as a group heterozygous females have significantly decreased cerebral creatine concentration, but that individual heterozygous females often have normal creatine concentrations found in their urine. Therefore, urine screening tests are unreliable as a standard test for diagnosing CTD.
A more reliable and sophisticated manner of testing for cerebral creatine concentrations is through "in vivo" proton magnetic resonance spectroscopy (1H MRS). "In vivo" 1H MRS uses proton signals to determine the concentration of specific metabolites. This method of testing is more reliable because it provides a fairly accurate measurement of the amount of creatine inside the brain. Similar to urine testing, a drawback of using 1H MRS as a test for CTD is that the results of the test could be attributed to any of the cerebral creatine deficiencies. The most accurate and reliable method of testing for CTD is through DNA sequence analysis of the SLC6A8 gene. DNA analysis of SLC6A8 allows the identification of the location and type of mutation causing the cerebral creatine deficiency. Furthermore, DNA analysis of SLC6A8 is able to prove that a cerebral creatine deficiency is due to CTD and not GAMT or AGAT deficiency.
The clinical presentation of ALD can vary greatly, making diagnosis difficult. With the variety of phenotypes, clinical suspicion of ALD can result from a variety of different presentations. Symptoms vary based on the disease phenotype, and even within families or between twins. When ALD is suspected based on clinical symptoms, the initial testing usually includes plasma very long chain fatty acid (VLCFA) determination using gas chromatography-mass spectrometry. The concentration of unsaturated VLCFA, particularly 26 carbon chains is significantly elevated in males with ALD, even prior to the development of other symptoms. Confirmation of ALD after positive plasma VLCFA determination usually involves molecular genetic analysis of "ABCD1". In females, where plasma VLCFA measurement is not always conclusive (some female carriers will have normal VLCFA in plasma), molecular analysis is preferred, particularly in cases where the mutation in the family is known. Although the clinical phenotype is highly variable among affected males, the elevations of VLCFA are present in all males with an "ABCD1" mutation.
Because the characteristic elevations associated with ALD are present at birth, well before any symptoms are apparent, there have been methods developed in the interests of including it in newborn screening programs. One of the difficulties with ALD as a disease included in universal newborn screening is the difficulty in predicting the eventual phenotype that an individual will express. The accepted treatment for affected boys presenting with the cerebral childhood form of the disease is a bone marrow transplant, a procedure which carries significant risks. However, because most affected males will demonstrate adrenal insufficiency, early discovery and treatment of this symptom could potentially prevent complications and allow these patients to be monitored for other treatment in the future, depending on the progression of their disease.
The Loes score is a rating of the severity of abnormalities in the brain found on MRI. It ranges from 0 to 34, based on a point system derived from the location and extent of disease and the presence of atrophy in the brain, either localized to specific points or generally throughout the brain. A Loes score of 0.5 or less is classified as normal, while a Loes score of 14 or greater is considered severe. It was developed by neuroradiologist Daniel J. Loes MD and is an important tool in assessing disease progression and the effectiveness of therapy.
It has been suggested that a possible method of treatment for histidinemia is through the adoption of a diet that is low in histidine intake. However, the requirement for such dietary restrictions is typically unnecessary for 99% of all cases of histidinemia.
Treatment is depended on the type of glycogen storage disease. E.g. GSD I is typically treated with frequent small meals of carbohydrates and cornstarch to prevent low blood sugar, while other treatments may include allopurinol and human granulocyte colony stimulating factor.
There is a specific pattern of N-acetyl amino acid excretion in the urine. The diagnosis can be confirmed by sequencing of the aminoacylase 1 gene.
Metabolic disorders can be treatable by nutrition management, especially if detected early. It is important for dieticians to have knowledge of the genotype to therefore create a treatment that will be more effective for the individual.
If SLOS goes undetected until after birth, diagnosis may be based on the characteristic physical features as well as finding increased plasma levels of 7DHC.
There are many different ways of detecting 7DHC levels in blood plasma, one way is using the Liebermann–Burchard (LB) reagent. This is a simple colorimetric assay developed with the intention of use for large scale screening. When treated with the LB reagent, SLOS samples turn pink immediately and gradually become blue; normal blood samples are initially colorless and develop a faint blue color. Although this method has limitations and is not used to give a definitive diagnosis, it has appeal in that it is a much faster method than using cell cultures.
Another way of detecting 7DHC is through gas chromatography, a technique used to separate and analyze compounds. Selected ion
monitoring gas chromatography/mass-spectrometry (SIM-GC/MS) is a very sensitive version of gas chromatography, and permits detection of even mild cases of SLOS. Other methods include time-of-flight mass spectrometry, particle-beam LC/MS, electrospray tandem MS, and ultraviolet absorbance, all of which may be used on either blood samples, amniotic fluid, or chorionic villus. Measuring levels of bile acids in patients urine, or studying DCHR7 activity in tissue culture are also common postnatal diagnostic techniques.
Treatment varies depending on the specific type. A low protein diet may be required in the management of tyrosinemia. Recent experience with nitisinone has shown it to be effective. It is a 4-hydroxyphenylpyruvate dioxygenase inhibitor indicated for
the treatment of hereditary tyrosinemia type 1 (HT-1) in combination with
dietary restriction of tyrosine and phenylalanine. The most effective treatment in patients with tyrosinemia type I seems to be full or partial liver transplant.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
Because LAL deficiency is inherited, each sibling of an affected individual has a 25% chance of having pathological mutations in LAL genes from both their mother and their father, a 50% chance of having a pathological mutation in only one gene, and a 25% chance of having no pathological mutations. Genetic testing for family members and genetic prenatal diagnosis of pregnancies for women who are at increased risk are possible if family members carrying pathological mutations have been identified.
CTD is difficult to treat because the actual transporter responsible for transporting creatine to the brain and muscles is defective. Studies in which oral creatine monohydrate supplements were given to patients with CTD found that patients did not respond to treatment. However, similar studies conducted in which patients that had GAMT or AGAT deficiency were given oral creatine monohydrate supplements found that patient’s clinical symptoms improved. Patients with CTD are unresponsive to oral creatine monohydrate supplements because regardless of the amount of creatine they ingest, the creatine transporter is still defective, and therefore creatine is incapable of being transported across the BBB. Given the major role that the BBB has in the transport of creatine to the brain and unresponsiveness of oral creatine monohydrate supplements in CTD patients, future research will focus on working with the BBB to deliver creatine supplements. However, given the limited number of patients that have been identified with CTD, future treatment strategies must be more effective and efficient when recognizing individuals with CTD.
Because of the ease of therapy (dietary exclusion of fructose), HFI can be effectively managed if properly diagnosed. In HFI, the diagnosis of homozygotes is difficult, requiring a genomic DNA screening with allele specific probes or an enzyme assay from a liver biopsy. Once identified, parents of infants who carry mutant aldolase B alleles leading to HFI, or older individuals who have clinical histories compatible with HFI can be identified and counselled with regard to preventive therapy: dietary exclusion of foods containing fructose, sucrose, or sorbitol. If possible, individuals who suspect they might have HFI, should avoid testing via fructose challenge as the results are non-conclusive for individuals with HFI and even if the diagnostic administration fructose is properly controlled, profound hypoglycemia and its sequelae can threaten the patient's well-being.
Overall, according to a study in British Columbia, approximately 2.3 children per 100,000 births (1 in 43,000) have some form of glycogen storage disease. In the United States, they are estimated to occur in 1 per 20,000–25,000 births. Dutch incidence rate is estimated to be 1 per 40,000 births.
D-Glyceric Acidemia should not be confused with L-Glyceric Acidemia (a.k.a. L-glyceric aciduria, a.k.a. primary hyperoxaluria type II ), which is associated with mutations in the "GRHPR" (encoding for the enzyme 'glyoxylate reductase/hydroxypyruvate reductase').
LAL deficiency can be treated with sebelipase alfa is a recombinant form of LAL that was approved in 2015 in the US and EU. The disease of LAL affects < 0.2 in 10,000 people in the EU. According to an estimate by a Barclays analyst, the drug will be priced at about US $375,000 per year.
It is administered once a week via intraveneous infusion in people with rapidly progressing disease in the first six months of life. In people with less aggressive disease, it is given every other week.
Before the drug was approved, treatment of infants was mainly focused on reducing specific complications and was provided in specialized centers. Specific interventions for infants included changing from breast or normal bottle formula to a specialized low fat formula, intravenous feeding, antibiotics for infections, and steroid replacement therapy because of concerns about adrenal function.
Statins were used in people with LAL-D prior to the approval of sebelipase alfa; they helped control cholesterol but did not appear to slow liver damage; liver transplantation was necessary in most patients.