Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
No formal diagnostic criteria exist. A diagnosis of Inappropriate sinus tachycardia is primarily one of exclusion and the following may be observed:
- Exclusion of all other causes of sinus tachycardia
- Common forms of supraventricular tachycardia (SVT) must be excluded
- Normal P wave morphology
- A resting sinus tachycardia is usually (but not always) present
- Nocturnal dip in heart rate
- Inappropriate heart rate response on exertion
- Mean heart rate in 24hrs >95 bpm
- Symptoms are documented to be due to tachycardia
- Hypotension is occasionally observed
- Syncope (fainting) is occasionally reported
A diagnosis of bradycardia in adults is based on a heart rate less than 60 BPM. This is determined usually either by palpation or electrocardiography.
If symptoms occur, a determination of electrolytes may be helpful in determining the underlying cause.
In general, the minimal evaluation of atrial fibrillation should be performed in all individuals with AF. The goal of this evaluation is to determine the general treatment regimen for the individual. If results of the general evaluation warrant it, further studies may then be performed.
If the symptoms are present while the person is receiving medical care (e.g., in an emergency department), an electrocardiogram (ECG/EKG) may show typical changes that confirm the diagnosis. If the palpitations are recurrent, a doctor may request a Holter monitor (24-hour or longer portable ECG) recording. Again, this will show the diagnosis if the recorder is attached at the time of the symptoms. In rare cases, disabling but infrequent episodes of palpitations may require the insertion of a small microchip-based device (e.g., Reveal Plus) under the skin that continuously record heart activity, and can be read through the skin after an episode. All these ECG-based technologies also enable the distinction between AVNRT and other abnormal fast heart rhythms such as atrial fibrillation, atrial flutter, sinus tachycardia, ventricular tachycardia and tachyarrhythmias related to Wolff-Parkinson-White syndrome, all of which may have symptoms that are similar to AVNRT.
Blood tests commonly performed in people with palpitations are:
- thyroid function tests (TFTs) - an overactive thyroid increases the risk of AVNRT
- electrolytes - disturbances in potassium, calcium and magnesium may predispose to AVNRT
- cardiac markers - if there is a concern that myocardial infarction (heart attack) has occurred either as a cause or as a result of the AVNRT; this is usually only the case if the patient has experienced chest pain
Affected patients demonstrate no structural problems of the heart upon echocardiographic, CT or MRI imaging.
CPVT diagnosis is based on reproducing irregularly shaped ventricular arrhythmias during ECG exercise stress testing, syncope occurring during physical activity and acute emotion, and a history of exercise or emotion-related palpitations and dizziness with an absence of structural cardiac abnormalities.
Because its symptoms are usually only triggered when the body is subjected to intense emotional or physical stress, the condition is often not detected by the traditional methods of electrophysiologic examination such as a resting electrocardiogram.
Limited studies have suggested that screening for atrial fibrillation in those 65 years and older increases the number of cases of atrial fibrillation detected.
ECG characteristics
- Rate: Less than 60 beats per minute.
- Rhythm: Regular.
- P waves: Upright, consistent, and normal in morphology and duration.
- P-R Interval: Between 0.12 and 0.20 seconds in duration.
- QRS Complex: Less than 0.12 seconds in width, and consistent in morphology.
The most important initial clue to the diagnosis is one's description of palpitation. The approximate age of the person when first noticed and the circumstances under which they occur are important, as is information about caffeine intake (tea or coffee drinking), and whether continual palpitations can be stopped by deep breathing or changing body positions. It is also very helpful to know how they start and stop (abruptly or not), whether or not they are regular, and approximately how fast the pulse rate is during an attack. If the person has discovered a way of stopping the palpitations, that is also helpful information.
The diagnosis is usually not made by a routine medical examination and electrical tracing of the heart's activity (ECG), because most people cannot arrange to have their symptoms be present while visiting the doctor. Nevertheless, findings such as a heart murmur or an abnormality of the ECG, which could point to the probable diagnosis, may be discovered. In particular, ECG changes that can be associated with specific disturbances of the heart rhythm may be picked up; so routine physical examination and ECG remain important in the assessment of palpitation.
Blood tests, particularly tests of thyroid gland function are also important baseline investigations (an overactive thyroid gland is a potential cause for palpitations; the treatment in that case is to treat the thyroid gland over-activity).
The next level of diagnostic testing is usually 24 hour (or longer) ECG monitoring, using a recorder called a Holter monitor, which can record the ECG continuously during a 24-hour or 48-hour period. If symptoms occur during monitoring it is a simple matter to examine the ECG recording and see what the cardiac rhythm was at the time. For this type of monitoring to be helpful, the symptoms must be occurring at least once a day. If they are less frequent, the chances of detecting anything with continuous 24, or even 48-hour monitoring, are substantially lowered. More recent technology such as the Zio Patch allows continuous recording for up to 14 days; the patient indicates when symptoms occur by pushing a button on the device and keeps a log of the events.
Other forms of monitoring are available, and these can be useful when symptoms are infrequent. A continuous-loop event recorder monitors the ECG continuously, but only saves the data when the wearer activates it. Once activated, it will save the ECG data for a period of time before the activation and for a period of time afterwards - the cardiologist who is investigating the palpitations can program the length of these periods. An implantable loop recorder may be helpful in people with very infrequent, but disabling symptoms. This recorder is implanted under the skin on the front of the chest, like a pacemaker. It can be programmed and the data examined using an external device that communicates with it by means of a radio signal.
Investigation of heart structure can also be important. The heart in most people with palpitation is completely normal in its physical structure, but occasionally abnormalities such as valve problems may be present. Usually, but not always, the cardiologist will be able to detect a murmur in such cases, and an ultrasound scan of the heart (echocardiogram) will often be performed to document the heart's structure. This is a painless test performed using sound waves and is virtually identical to the scanning done in pregnancy to look at the fetus.
The diagnosis of ventricular tachycardia is made based on the rhythm seen on either a 12-lead ECG or a telemetry rhythm strip. It may be very difficult to differentiate between ventricular tachycardia and a wide-complex supraventricular tachycardia in some cases. In particular, supraventricular tachycardias with aberrant conduction from a pre-existing bundle branch block are commonly misdiagnosed as ventricular tachycardia. Other rarer phenomena include ashman beats and antedromic atrioventricular re-entry tachycardias.
Various diagnostic criteria have been developed to determine whether a wide complex tachycardia is ventricular tachycardia or a more benign rhythm. In addition to these diagnostic criteria, if the individual has a past history of a myocardial infarction, congestive heart failure, or recent angina, the wide complex tachycardia is much more likely to be ventricular tachycardia.
The proper diagnosis is important, as the misdiagnosis of supraventricular tachycardia when ventricular tachycardia is present is associated with worse prognosis. This is particularly true if calcium channel blockers, such as verapamil, are used to attempt to terminate a presumed supraventricular tachycardia. Therefore, it is wisest to assume that all wide complex tachycardia is VT until proven otherwise.
Cardiac arrhythmia are often first detected by simple but nonspecific means: auscultation of the heartbeat with a stethoscope, or feeling for peripheral pulses. These cannot usually diagnose specific arrhythmia but can give a general indication of the heart rate and whether it is regular or irregular. Not all the electrical impulses of the heart produce audible or palpable beats; in many cardiac arrhythmias, the premature or abnormal beats do not produce an effective pumping action and are experienced as "skipped" beats.
The simplest "specific" diagnostic test for assessment of heart rhythm is the electrocardiogram (abbreviated ECG or EKG). A Holter monitor is an EKG recorded over a 24-hour period, to detect arrhythmias that may happen briefly and unpredictably throughout the day.
A more advanced study of the heart's electrical activity can be performed to assess the source of the aberrant heart beats. This can be accomplished in an electrophysiology study, an endovascular procedure that uses a catheter to "listen" to the electrical activity from within the heart, additionally if the source of the arrhythmias is found, often the abnormal cells can be ablated and the arrhythmia can be permanently corrected. "" (TAS) instead uses an electrode inserted through the esophagus to a part where the distance to the posterior wall of the left atrium is only approximately 5–6 mm (remaining constant in people of different age and weight). Transesophageal atrial stimulation can differentiate between atrial flutter, AV nodal reentrant tachycardia and orthodromic atrioventricular reentrant tachycardia. It can also evaluate the risk in people with Wolff–Parkinson–White syndrome, as well as terminate supraventricular tachycardia caused by re-entry.
The main pumping chamber, the ventricle, is protected (to a certain extent) against excessively high rates arising from the supraventricular areas by a "gating mechanism" at the atrioventricular node, which allows only a proportion of the fast impulses to pass through to the ventricles. In Wolff-Parkinson-White syndrome, a "bypass tract" avoids this node and its protection and the fast rate may be directly transmitted to the ventricles. This situation has characteristic findings on ECG.
If the person is hemodynamically unstable or other treatments have not been effective, synchronized electrical cardioversion may be used. In children this is often done with a dose of 0.5 to 1 J/Kg.
Usually apparent on the ECG, but if heart rate is above 140 bpm the P wave may be difficult to distinguish from the previous T wave and one may confuse it with a paroxysmal supraventricular tachycardia or atrial flutter with a 2:1 block. Ways to distinguish the three are:
- Vagal maneuvers (such as carotid sinus massage or Valsalva's maneuver) to slow the rate and identification of P waves
- administer AV blockers (e.g., adenosine, verapamil) to identify atrial flutter with 2:1 block
Not required for physiologic sinus tachycardia. Underlying causes are treated if present.
Acute myocardial infarction. Sinus tachycardia can present in more than a third of the patients with AMI but this usually decreases over time. Patients with sustained sinus tachycardia reflects a larger infarct that are more anterior with prominent left ventricular dysfunction, associated with high mortality and morbidity. Tachycardia in the presence of AMI can reduce coronary blood flow and increase myocardial oxygen demand, aggravating the situation. Beta blockers can be used to slow the rate, but most patients are usually already treated with beta blockers as a routine regimen for AMI.
Practically, many studies showed that there is no need for any treatment.
IST and POTS. Beta blockers are useful if the cause is sympathetic overactivity. If the cause is due to decreased vagal activity, it is usually hard to treat and one may consider radiofrequency catheter ablation.
Athlete's heart is not dangerous for athletes (though if a nonathlete has symptoms of bradycardia, cardiomegaly, and cardiac hypertrophy, another illness may be present). Athlete's heart is not the cause of sudden cardiac death during or shortly after a workout, which mainly occurs due to hypertrophic cardiomyopathy, a genetic disorder.
No treatment is required for people with athletic heart syndrome; it does not pose any physical threats to the athlete, and despite some theoretical concerns that the ventricular remodeling might conceivably predispose for serious arrhythmias, no evidence has been found of any increased risk of long-term events. Athletes should see a physician and receive a clearance to be sure their symptoms are due to athlete’s heart and not another heart disease, such as cardiomyopathy. If the athlete is uncomfortable with having athlete's heart or if a differential diagnosis is difficult, deconditioning from exercise for a period of three months allows the heart to return to its regular size. However, one long-term study of elite-trained athletes found that dilation of the left ventricle was only partially reversible after a long period of deconditioning. This deconditioning is often met with resistance to the accompanying lifestyle changes. The real risk attached to athlete's heart is if athletes or nonathletes simply assume they have the condition, instead of making sure they do not have a life-threatening heart illness.
IST has been treated both pharmacologically and invasively, with varying degrees of success. IST, in and of itself, is not indicative of higher rates of mortality, and non-treatment is an option chosen by many if they have minimal symptoms.
Some types of medication tried by cardiologists and other physicians include: beta blockers, selective sinus node I channel inhibitors (ivabradine), calcium channel blockers and antiarrhythmic agents. Some SSRI drugs are also occasionally tried and also treatments more commonly used to treat postural orthostatic tachycardia syndrome such as fludrocortisone. This approach is very much "trial-and-error". Patients with IST are often intolerant to beta blockers. A new selective sinus node inhibitor ivabradine is also being used to treat IST.
Invasive treatments include forms of catheter ablation such as sinus node modification (selective ablation of the sinus node), complete sinus node ablation (with associated implantation of a permanent artificial pacemaker) and AV node ablation in very resistant cases (creation of iatrogenic complete heart block, necessitating implantation of a permanent artificial pacemaker).
However invasive treatments can also make the symptoms worse, not cure it. Treatment should be chosen with care as the patient could become in need of a pacemaker or have more extensive symptoms.
The method of cardiac rhythm management depends firstly on whether or not the affected person is stable or unstable. Treatments may include physical maneuvers, medications, electricity conversion, or electro- or cryo-cautery.
In the United States, people admitted to the hospital with cardiac arrhythmia and conduction disorders with and without complications were admitted to the intensive care unit more than half the time in 2011.
There are no specific diagnostic criteria for TIC, and it can be difficult to diagnose for a number of reasons. First, in patients presenting with both tachycardia and cardiomyopathy, it can be difficult to distinguish which is the causative agent. Additionally, it can occur in patients with or without underlying structural heart disease. Previously normal left ventricular ejection fraction or left ventricular systolic dysfunction out of proportion to a patient’s underlying cardiac disease can be important clues to possible TIC. The diagnosis of TIC is made after excluding other causes of cardiomyopathy and observing resolution of the left ventricular systolic dysfunction with treatment of the tachycardia.
Specific tests that can be used in the diagnosis and monitoring of TIC include:
- electrocardiography (EKG)
- Continuous cardiac rhythm monitoring (e.g. Holter monitor)
- echocardiography
- Radionuclide imaging
- Endomyocardial biopsy
- Cardiac magnetic resonance imaging (CMR)
- N-terminal pro-B-type natriuretic peptide (NT-pro BNP)
Cardiac rhythm monitors can be used to diagnose tachyarrhythmias. The most common modality used is an EKG. A continuous rhythm monitor such as a Holter monitor can be used to characterize the frequency of a tachyarrhythmia over a longer period of time. Additionally, some patients may not present to the clinical setting in an abnormal rhythm, and continuous rhythm monitor can be useful to determine if an arrhythmia is present over a longer duration of time.
To assess cardiac structure and function, echocardiography is the most commonly available and utilized modality. In addition to decreased left ventricular ejection fraction, studies indicate that patients with TIC may have a smaller left ventricular end-diastolic dimension compared to patients with idiopathic dilated cardiomyopathy. Radionuclide imaging can be used as a non-invasive test to detect myocardial ischemia. Cardiac MRI has also been used to evaluate patients with possible TIC. Late-gadolinium enhancement on cardiac MRI indicates the presence of fibrosis and scarring, and may be evidence of cardiomyopathy not due to tachycardia. A decline in serial NT-pro BNP with control of tachyarrhythmia indicates reversibility of the cardiomyopathy, which would also suggest TIC.
People with TIC display distinct changes in endomyocardial biopsies. TIC is associated with the infiltration of CD68 macrophages into the myocardium while CD3 T-cells are very rare. Furthermore, patients with TIC display significant fibrosis due to collagen deposition. The distribution of mitochondria has found to be altered as well, with an enrichment at the intercalated discs (EMID-sign).
TIC is likely underdiagnosed due to attribution of the tachyarrhythmia to the cardiomyopathy. Poor control of the tachyarrhythmia can result in worsening of heart failure symptoms and cardiomyopathy. Therefore, it is important to aggressively treat the tachyarrhythmia and monitor patients for resolution of left ventricular systolic dysfunction in cases of suspected TIC.
There can be similar patterns depending on the frequency of abnormal beats. If every other beat is abnormal, it is described as bigeminal. If every third beat is aberrant, it is trigeminal; every fourth would be quadrigeminal. Typically, if every fifth or more beat is abnormal, the aberrant beat would be termed occasional.
Bigeminy is contrasted with couplets, which are paired abnormal beats. Groups of three abnormal beats are called triplets and are considered as a brief run of non-sustained ventricular tachycardia (NSVT) and if the grouping last for more than 30 seconds, it is ventricular tachycardia (VT).
PVCs are usually diagnosed after the patient has described "skipped beats", pauses or palpitations. Typically the palpitations felt by PVC patients are very irregular and less sustained than patients with other types of arrhythmia. They are likely to have "flip flopping" sensations where it feels like the heart is flipping over or pounding due to there being a pause after the premature contraction and then a powerful contraction after the pause. There is a possibility that they might feel a ‘fluttering’ in their chest or a pounding in their neck but these two types of palpitations aren't very common in PVC patients.
A physical examination should be conducted after a full history has been taken. This is useful in determining any possible heart defects that might be causing the palpitations. For example, some cases of premature ventricular contraction have a mitral-valve prolapse which can be determined through the physical examination.
The next step in diagnosis is a 12 lead ECG which can be performed in the doctors’ office over a short period of time; however this is often non-conclusive in diagnosis because it is not very sensitive and there is only a small chance of a premature ventricular contraction occurring in the short period of time. Holter monitoring is a far better method for diagnosis as it is continuous recording of the heart’s rhythm over a period of 24 hours, or event monitoring which records noncontinuously for 30 days or indefinitely. This increases the likelihood of a premature ventricular contraction occurring during the recording period and is therefore more useful in diagnosis. Another method of detection of PVCs is a portable electrocardiogram device known as an event recorder that can be carried around for home monitoring of the heart's activity. Both the Holter monitor and the event recorder can help to identify the pattern of a PVC. The significance of a patient's PVCs can be monitored and diagnosed through exercise stress electrocardiogram. If the premature beats go away during the exercise test then they are considered to be harmless, but if the exercise provokes the extra beats than it may indicate higher risk of serious heart rhythm problems.
When looking at an electrocardiograph, premature ventricular contractions are easily spotted and therefore a definitive diagnosis can be made. The QRS and T waves look very different from normal readings. The spacing between the PVC and the preceding QRS wave is a lot shorter than usual and the time between the PVC and the following QRS is a lot longer. However, the time between the preceding and ing QRS waves stays the same as normal due to the compensatory pause.
PVCs can be distinguished from premature atrial contractions because the compensatory pause is longer following premature ventricular contractions.
There are four different named patterns of regularly occurring PVCs. Depending whether there are 1, 2, or 3 normal beats between each PVC, the rhythm is called bigeminy, trigeminy, or quadrigeminy. Unifocal PVCs are triggered from a single site in the ventricle, causing the peaks on the ECG to look the same. Multifocal PVCs arise when more than one site in the ventricles initiate depolarization, causing each peak on the ECG to have a different shape. If 3 or more PVCs occur in a row it may be called ventricular tachycardia.
Because several well-known and high-profile cases of athletes experiencing sudden unexpected death due to cardiac arrest, such as Reggie White and Marc-Vivien Foé, a growing movement is making an effort to have both professional and school-based athletes screened for cardiac and other related conditions, usually through a careful medical and health history, a good family history, a comprehensive physical examination including auscultation of heart and lung sounds and recording of vital signs such as heart rate and blood pressure, and increasingly, for better efforts at detection, such as an electrocardiogram.
An electrocardiogram (ECG) is a relatively straightforward procedure to administer and interpret, compared to more invasive or sophisticated tests; it can reveal or hint at many circulatory disorders and arrhythmias. Part of the cost of an ECG may be covered by some insurance companies, though routine use of ECGs or other similar procedures such as echocardiography (ECHO) are still not considered routine in these contexts. Widespread routine ECGs for all potential athletes during initial screening and then during the yearly physical assessment could well be too expensive to implement on a wide scale, especially in the face of the potentially very large demand. In some places, a shortage of funds, portable ECG machines, or qualified personnel to administer and interpret them (medical technicians, paramedics, nurses trained in cardiac monitoring, advanced practice nurses or nurse practitioners, physician assistants, and physicians in internal or family medicine or in some area of cardiopulmonary medicine) exist.
If sudden cardiac death occurs, it is usually because of pathological hypertrophic enlargement of the heart that went undetected or was incorrectly attributed to the benign "athletic" cases. Among the many alternative causes are episodes of isolated arrhythmias which degenerated into lethal VF and asystole, and various unnoticed, possibly asymptomatic cardiac congenital defects of the vessels, chambers, or valves of the heart. Other causes include carditis, endocarditis, myocarditis, and pericarditis whose symptoms were slight or ignored, or were asymptomatic.
The normal treatments for episodes due to the pathological look-alikes are the same mainstays for any other episode of cardiac arrest: Cardiopulmonary resuscitation, defibrillation to restore normal sinus rhythm, and if initial defibrillation fails, administration of intravenous epinephrine or amiodarone. The goal is avoidance of infarction, heart failure, and/or lethal arrhythmias (ventricular tachycardia, ventricular fibrillation, asystole, or pulseless electrical activity), so ultimately to restore normal sinus rhythm.
Adenosine, an ultra-short-acting AV nodal blocking agent, is indicated if vagal maneuvers are not effective. If unsuccessful or the PSVT recurs diltiazem or verapamil are recommended. Adenosine may be safely used during pregnancy.
SVT that does not involve the AV node may respond to other anti-arrhythmic drugs such as sotalol or amiodarone.
Ventricular tachycardia can be classified based on its "morphology":
- Monomorphic ventricular tachycardia means that the appearance of all the beats match each other in each lead of a surface electrocardiogram (ECG).
- Scar-related monomorphic ventricular tachycardia is the most common type and a frequent cause of death in patients having survived a heart attack or myocardial infarction, especially if they have a weak heart muscle.
- RVOT tachycardia is a type of monomorphic ventricular tachycardia originating in the right ventricular outflow tract. RVOT morphology refers to the characteristic pattern of this type of tachycardia on an ECG.
- The source of the re-entry circuit can be identified by evaluating the morphology of the QRS complex in the V1 lead of a surface ECG. If the R wave is dominant (consistent with a right bundle branch block morphology), this indicates the origin of the VT is the left ventricle. Conversely, if the S wave is dominant (consistent with a left bundle branch block morphology, this is consistent with VT originating from the right ventricle or interventricular septum.
- Polymorphic ventricular tachycardia, on the other hand, has beat-to-beat variations in morphology. This may appear as a cyclical progressive change in cardiac axis, previously referred to by its French name "torsades de pointes" ("twisting of the spikes"). However, at the current time, the term torsades de pointes is reserved for polymorphic VT occurring in the context of a prolonged resting QT interval.
Another way to classify ventricular tachycardias is the "duration of the episodes": Three or more beats in a row on an ECG that originate from the ventricle at a rate of more than 100 beats per minute constitute a ventricular tachycardia.
- If the fast rhythm self-terminates within 30 seconds, it is considered a non-sustained ventricular tachycardia.
- If the rhythm lasts more than 30 seconds, it is known as a sustained ventricular tachycardia (even if it terminates on its own after 30 seconds).
A third way to classify ventricular tachycardia is on the basis of its "symptoms": Pulseless VT is associated with no effective cardiac output, hence, no effective pulse, and is a cause of cardiac arrest. In this circumstance, it is best treated the same way as ventricular fibrillation (VF), and is recognized as one of the shockable rhythms on the cardiac arrest protocol. Some VT is associated with reasonable cardiac output and may even be asymptomatic. The heart usually tolerates this rhythm poorly in the medium to long term, and patients may certainly deteriorate to pulseless VT or to VF.
Less common is ventricular tachycardia that occurs in individuals with structurally normal hearts. This is known as idiopathic ventricular tachycardia and in the monomorphic form coincides with little or no increased risk of sudden cardiac death. In general, idiopathic ventricular tachycardia occurs in younger individuals diagnosed with VT. While the causes of idiopathic VT are not known, in general it is presumed to be congenital, and can be brought on by any number of diverse factors.
It may not be possible to tell the difference between beta blocker toxicity and calcium channel blocker overdose based on signs and symptoms.
Ambulatory monitoring of the electrocardiogram (ECG) may be necessary because arrhythmias are transient. The ECG may show any of the following:
- Inappropriate sinus bradycardia
- Sinus arrest
- Sinoatrial block
- Tachy-Brady Syndrome
- Atrial fibrillation with slow ventricular response
- A prolonged asystolic period after a period of tachycardias
- Atrial flutter
- Ectopic atrial tachycardia
- Sinus node reentrant tachycardia
- Wolff-Parkinson-White syndrome
Electrophysiologic tests are no longer used for diagnostic purposes because of their low specificity and sensitivity. Cardioinhibitory and vasodepressor forms of sick sinus syndrome may be revealed by tilt table testing.