Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In Scientology, an implant is a form of Thought insertion, similar to an engram but done deliberately and with evil intent. It is "an intentional installation of fixed ideas, contra-survival to the thetan".
The intention in the original engram or incident is to implant an idea or emotion or sensation, regarding some phenomenon etc. The intention in Scientology and Dianetics is to erase the compulsive or command effect of the idea, emotion, sensation, etc. so that the person can make a rational judgment and decision in the affected areas of life.
Scientology practices often have to do with addressing implants prior to the current lifetime — one of the most notable is the "R6 implant"; but in some cases current life implants are addressed. Examples of implants according to Scientology include Aversion therapy, Electroconvulsive therapy, hypnosis, various attempts at brainwashing, and the inducing of fear or terror. Note that this is not a complete list, as many kinds of incidents can include implants as an element.
Other important implants in Scientology doctrine include the Helatrobus implants, which Hubbard claimed occurred 382 trillion years ago to 52 trillion years ago by an alien nation called the Helatrobans, who sought to restrain human minds by capturing and brainwashing thetans. These implants are said to be responsible for the concept of Heaven.
No consensus criteria exist for the diagnosis of ENS; it is typically diagnosed by ruling out other conditions, with ENS remaining the likely diagnosis if the signs and symptoms are present. A "cotton test" has been proposed, in which moist cotton is held where a turbinate should be, to see if it provides relief; while this has not been validated nor is it widely accepted, it may be useful to identify which people may benefit from surgery.
As of 2015, protocols for using rhinomanometry to diagnose ENS and measure response to surgery were under development, as was a standardized clinical instrument (a well defined and validated questionnaire) to obtain more useful reporting of symptoms.
Pectus excavatum requires no corrective procedures in mild cases. Treatment of severe cases can involve either invasive or non-invasive techniques or a combination of both. Before an operation proceeds several tests are usually to be performed. These include, but are not limited to, a CT scan, pulmonary function tests, and cardiology exams (such as auscultation and ECGs). After a CT scan is taken, the Haller index is measured. The patient's Haller is calculated by obtaining the ratio of the transverse diameter (the horizontal distance of the inside of the ribcage) and the anteroposterior diameter (the shortest distance between the vertebrae and sternum). A Haller Index of greater than 3.25 is generally considered severe, while normal chest has an index of 2.5. The cardiopulmonary tests are used to determine the lung capacity and to check for heart murmurs.
Initial treatment is similar to atrophic rhinitis, namely keeping the nasal mucosa moist with saline or oil-based lubricants and treating pain and infection as they arise; adding menthol to lubricants may be helpful in ENS, as may be use of a cool mist humidifer at home. For people with anxiety, depression, or who are obsessed with the feeling that they can't breathe, psychiatric or psychological care may be helpful.
In some people, surgery to restore missing or reduced turbinates may be beneficial.
A 2015 meta-analysis identified 128 people treated with surgery from eight studies that were useful to pool, with an age range of 18 to 64, most of whom had been suffering ENS symptoms for many years. The most common surgical approach was creating a pocket under the mucosa and implanting material - the amount and location were based on the judgement of the surgeon. In about half the cases a filler such as noncellular dermis, a medical-grade porous high-density polyethylene, or silastic was used and in about 40% cartilage taken from the person or from a cow was used. In a few cases hyaluronic acid was injected and in a few others tricalcium phosphate was used. There were no complications caused by the surgery, although one person was over-corrected and developed chronic rhinosinusitis and two people were under-corrected. The hyaluronic acid was completely resorbed in the three people who received it at the one year follow up, and in six people some of the implant came out, but this did not affect the result as enough remained. About 21% of the people had no or marginal improvement but the rest reported significant relief of their symptoms. Since none of the studies used placebo or blinding there may be a strong placebo effect or bias in reporting.
Pectus excavatum is initially suspected from visual examination of the anterior chest. Auscultation of the chest can reveal displaced heart beat and valve prolapse. There can be a heart murmur occurring during systole caused by proximity between the sternum and the pulmonary artery.
Lung sounds are usually clear yet diminished due to decreased base lung capacity.
Many scales have been developed to determine the degree of deformity in the chest wall. Most of these are variants on the distance between the sternum and the spine. One such index is the "Backer ratio" which grades severity of deformity based on the ratio between the diameter of the vertebral body nearest to xiphosternal junction and the distance between the xiphosternal junction and the nearest vertebral body. More recently the "Haller index" has been used based on CT scan measurements. An index over 3.25 is often defined as severe. The Haller index is the ratio between the horizontal distance of the inside of the ribcage and the shortest distance between the vertebrae and sternum.
Chest x-rays are also useful in the diagnosis. The chest x-ray in pectus excavatum can show an opacity in the right lung area that can be mistaken for an infiltrate (such as that seen with pneumonia). Some studies also suggest that the Haller index can be calculated based on chest x-ray as opposed to CT scanning in individuals who have no limitation in their function.
Pectus excavatum is differentiated from other disorders by a series of elimination of signs and symptoms. Pectus carinatum is excluded by the simple observation of a collapsing of the sternum rather than a protrusion. Kyphoscoliosis is excluded by diagnostic imaging of the spine, where in pectus excavatum the spine usually appears normal in structure.
Thin cut (2-3mm) CT scan with axial and coronal view is the optimal study of choice for orbital fractures.
Plain radiographs, on the other hand, do not sensitively capture blowout fractures. On Water's view radiograph, polypoid mass can be observed hanging from the floor into the maxillary antrum, classically known as teardrop sign, as it usually is in shape of a teardrop. This polypoid mass consists of herniated orbital contents, periorbital fat and inferior rectus muscle. The affected sinus is partially opacified on radiograph. Air-fluid level in maxillary sinus may sometimes be seen due to presence of blood. Lucency in orbits (on a radiograph) usually indicate orbital emphysema.
Diagnosis is based on clinical and radiographic evidence. Periorbital bruising and subconjunctival hemorrhage are indirect signs of a possible fracture.
The complete or partial absence of the pectoralis muscle is the malformation that defines Poland Syndrome. It can be treated by inserting a custom implant designed by CAD (computer aided design). A 3D reconstruction of the patient's chest is performed from a medical scanner to design a virtual implant perfectly adapted to the anatomy of each one. The implant is made of medical silicone unbreakable rubber. This treatment is purely cosmetic and does not make up for the patient's imbalanced upper body strength.
The Poland syndrome malformations being morphological, correction by custom implant is a first-line treatment. This technique allows a wide variety of patients to be treated with good outcomes. Poland Syndrome can be associated with bones, subcutaneous and mammary atrophy: if the first, as for pectus excavatum, is successfully corrected by a custom implant, the others can require surgical intervention such as lipofilling or silicone breast implant, in a second operation.
The surgery takes place under general anaesthesia and lasts less than 1 hour. The surgeon prepares the locus to the size of the implant after performing a 8-cm axillary incision and inserts the implant beneath the skin. The closure is made in 2 planes.
The implant will replace the pectoralis major muscle, thus enabling the thorax to be symmetrical and, in women, the breast as well. If necessary, especially in the case of women, a second operation will complement the result by the implantation of a breast implant and / or lipofilling.
Lipomodelling is progressively used in the correction of breast and chest wall deformities. In Poland syndrome, this technique appears to be a major advance that will probably revolutionize the treatment of severe cases. This is mainly due to its ability to achieve previously unachievable quality of reconstruction with minimal scaring.
The diagnosis CFND is established only after the presence of a mutation in the EFNB1 gene has been determined. Physical manifestations are not necessarily part of the diagnostic criteria, but can help guide in the right direction. This is due to the large heterogeneity between patients regarding phenotypic expression.
20% of the patients that present with CFND-like characteristics do not display a mutation in the EFNB1 gene. The group of patients diagnosed with CFND is thus often overestimated. However, it is important to distinguish this population from CFND for research purposes. On the other hand, especially in males, it is possible that someone is a carrier of the EFNB1 gene mutation yet does not present with any physical manifestations. Screening for the presence of an EFNB1 mutation is thus the most reliable method to establish the diagnosis CFND.
Genetic counseling or prenatal screening may be advised if there is a reason to suspect the presence of an EFNB1 gene mutation. Prenatal screening may be done by performing an ultrasound, where can be searched specifically for hypertelorism or a bifid nasal tip. However, this is quite difficult as facial involvement may not be obvious at such an early age, especially in cases with mild phenotypic presentation. The most definitive way to prove the presence of CFND is done by genetic testing, through amniocentesis and chorionic villus sampling. This however carries a greater risk of premature termination of the pregnancy.
Following inspection and determination of the extent of injury, the basic labrum repair is as follows.
- The glenoid and labrum are roughened to increase contact surface area and promote re-growth.
- Locations for the bone anchors are selected based on number and severity of tear. A severe tear involving both SLAP and Bankart lesions may require seven anchors. Simple tears may only require one.
- The glenoid is drilled for the anchor implantation.
- Anchors are inserted in the glenoid.
- The suture component of the implant is tied through the labrum and knotted such that the labrum is in tight contact with the glenoid surface.
First described by David Lichtman et al. in 1977.
The purpose of this classification system is to guide treatment and to enable comparison of clinical outcomes.
1. Stage I Normal radiograph (possible lunate fracture).
2. Stage II Sclerosis of the lunate without collapse. (Portions of the lunate begin to deteriorate. This shows as a white blemish on x-rays.)
3. Stage IIIA Lunate collapse and fragmentation, in addition to proximal migration of the capitate.
4. Stage IIIB Lunate collapse and fragmentation, in addition to proximal migration of the capitate. In addition there is fixed flexion deformity of the scaphoid.
5. Stage IV Changes up to and including fragmentation, with radiocarpal and midcarpal arthritic changes.
Operations that attempt to restore a blood supply to the lunate may be performed.
Depending on the stage the disease is in when it is discovered, varying treatments are applied.
If X-rays show a mostly intact lunate (not having lost a great deal of size, and not having been compressed into a triangular shape), but an MRI shows a lack of blood flow to the bone, then revascularization is normally attempted. Revascularization techniques, usually involving a bone graft taken elsewhere from the body — often held in place by an external fixator for a period of weeks or months — have been successful at stages as late as 3B, although their use at later stages (like most treatments for Kienböck's) is controversial.
One conservative treatment option would be using an Ultrasound Bone Stimulator, which uses low-intensity pulsed ultrasound to increase vascular endothelial growth factor (VEG-F) and increase blood flow to the bone.
Some Kienböck's patients present with an abnormally large difference in length between the radius and the ulna, termed "ulnar variance", which is hypothesized to cause undue pressure on the lunate, contributing to its avascularity. In cases with such a difference, "radial shortening" is commonly performed. In this procedure, the radius (the lateral long bone) is shortened by a given length, usually between 2 and 5 mm, to relieve the pressure on the dying lunate. A titanium plate is inserted to hold the newly shortened bone together.
During Stage 3, the lunate has begun to break apart due to the pressure of the surrounding bones. This causes sharp fragments of bone to float between the joints, causing excruciating pain. At this point, the lunate is ready for removal. The most frequently performed surgery is the "Proximal Row Carpectomy", where the lunate, scaphoid and triquetrum are extracted. This greatly limits the range of motion of the wrist, but pain relief can be achieved for longer than after the other surgeries.
Another surgical option for this stage is a titanium, silicon or pyrocarbon implant that takes place of the lunate, though doctors shy from this due to a tendency of the implant to smooth the edges of the surrounding bones, thus causing painful pinched nerves when the bones slip out of place.
After the lunate is removed, another procedure, "ulnar shortening" can be performed. This relieves pressure on the newly formed wrist joint of the pisiform, hamate and capitate. Depending on the surgeon, the procedure may be performed the same way as the "radial shortening" where a small section is removed, or the entire top of the ulna may be excised.
At Stage 4, the lunate has completely disintegrated and the other bones in the wrist have radiated downward to fill in the void. The hand now has a deformed, crippled appearance. The only procedure that can be done is the "total wrist fusion", where a plate is inserted on the top of the wrist from the radius to the carpals, effectively freezing all flexion and movement in the wrist. Rotation is still possible as it is controlled by the radius and ulna.
This is currently the last and most complete surgical option for Kienböck's sufferers.
Most of the treatments described here are not mutually exclusive — meaning that a single patient may receive many of them in his quest to relieve pain. For instance, some patients have had casting, bone graft, radial shortening, proximal row carpectomy, and wrist fusion, all on the same hand.
Bilateral vestibular schwannomas are diagnostic of NF2.
NF II can be diagnosed with 65% accuracy prenatally with chorionic villus sampling or amniocentesis.
There is evidence in literature to support both surgical and non-surgical forms of treatment. In some, physical therapy can strengthen the supporting muscles in the shoulder joint to the point of reestablishing stability.
Surgical treatment of SLAP tears has become more common in recent years. The success rate for repairing isolated SLAP tears is reported between 74-94%. While surgery can be performed as a traditional open procedure, an arthroscopic technique is currently favored being less intrusive with low chance of iatrogenic infection.
Associated findings within the shoulder joint are varied, may not be predictable and include:
- SLAP lesion – labrum/glenoid separation at the tendon of the biceps muscle
- Bankart lesion – labrum/glenoid separation at the inferior glenohumeral ligament
- Biceps Tendon - exclusion of pulley injury
- Bone – glenoid, humerus — injury or degenerative change involving joint surface
- Anatomical variants — sublabral foramen, Buford Complex
Although good outcomes with SLAP repair over the age of 40 are reported, both age greater than 40 and Workmen's Compensation status have been noted as independent predictors of surgical complications. This is particularly so if there is an associated rotator cuff injury. In such circumstances, it is suggested that labral debridement and biceps tenotomy is preferred.
SLAP (Superior Labral Tear, Anterior to Posterior)
- "Type 1"
- Fraying of Superior Labrum
- Biceps Anchor Intact
- "Type 2"
- Superior Labrum detached
- Detachment of the Biceps Anchor
- "Type 3"
- Bucket Handle type tear of Superior Labrum
- Biceps Anchor INTACT
- "Type 4"
- Bucket Handle tear of Superior Labrum
- Extension of tear in Biceps Tendon
- Part of Biceps Anchor still INTACT
Metallosis is the putative medical condition involving deposition and build-up of metal debris in the soft tissues of the body.
Metallosis has been hypothesized to occur when metallic components in medical implants, specifically joint replacements, abrade against one another.
Metallosis has also been observed in some patients either sensitive to the implant or for unknown reasons even in the absence of malpositioned prosthesis. Though rare, metallosis has been observed at an estimated incidence of 5% of metal joint implant patients over the last 40 years. Women may be at slightly higher risk than men. If metallosis occurs, it may involve the hip and knee joints, the shoulder, wrist, or elbow joints.
The abrasion of metal components may cause metal ions to be solubilized. The hypothesis that the immune system identifies the metal ions as foreign bodies and inflames the area around the debris may be incorrect because of the small size of metal ions may prevent them from becoming haptens. Poisoning from metallosis is rare, but cobaltism is an established health concern. The involvement of the immune system in this putative condition has also been theorized but has never been proven.
Purported symptoms of metallosis generally include pain around the site of the implant, pseudotumors (a mass of inflamed cells that resembles a tumor but is actually collected fluids), and a noticeable rash that indicates necrosis. The damaged and inflamed tissue can also contribute to loosening the implant or medical device. Metallosis can cause dislocation of non-cemented implants as the healthy tissue that would normally hold the implant in place is weakened or destroyed. Metallosis has been demonstrated to cause osteolysis.
Women, those who are small in stature, and the obese are at greater risk for metallosis because their body structure causes more tension on the implant, quickening the abrasion of the metal components and the subsequent build-up of metallic debris.
Ferner et al. give three sets of diagnostic criteria for NF2:
1. Bilateral vestibular schwannoma (VS) or family history of NF2 plus Unilateral VS or any two of: meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
2. Unilateral VS plus any two of meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
3. Two or more meningioma plus unilateral VS or any two of glioma, schwannoma and cataract.
Another set of diagnostic criteria is the following:
- Detection of bilateral acoustic neuroma by imaging-procedures
- First degree relative with NF II and the occurrence of neurofibroma, meningiomas, glioma, or Schwannoma
- First degree relative with NF II and the occurrence of juvenile posterior subcapsular cataract.
The criteria have varied over time.
Persons suffering from metallosis can experience any of the following symptoms:
- Extreme pain (even when not moving);
- Swelling and inflammation;
- Loosening of the implant;
- Dislocation;
- Bone deterioration;
- Aseptic fibrosis, local necrosis;
- Hip replacement failure;
- Metal toxicity from grinding metal components; and
- Necessary subsequent hip replacement revision or surgeries.
The main diagnostic tools for evaluating FND are X-rays and CT-scans of the skull. These tools could display any possible intracranial pathology in FND. For example, CT can be used to reveal widening of nasal bones. Diagnostics are mainly used before reconstructive surgery, for proper planning and preparation.
Prenatally, various features of FND (such as hypertelorism) can be recognized using ultrasound techniques. However, only three cases of FND have been diagnosed based on a prenatal ultrasound.
Other conditions may also show symptoms of FND. For example, there are other syndromes that also represent with hypertelorism. Furthermore, disorders like an intracranial cyst can affect the frontonasal region, which can lead to symptoms similar to FND. Therefore, other options should always be considered in the differential diagnosis.
The Kennedy classification quantifies partial edentulism. An outline is covered at the removable partial denture article.
Since AIED symptoms are fairly common to many hearing loss disorders, it may be difficult to diagnose AIED without performing multiple medical tests. Some examples of these tests include:
- Hearing Tests for Progressive Hearing and Balance loss
- Audiometry (measure of hearing acuity and sound intensity)
- Rotatory Chair Test (determines if inner ear is responsible for balance loss)
- Electrocochleography (ECOG) (recording of electrical potential in inner ear due to sound)
- Blood Tests for General Autoimmune Diseases
- Erythrocyte sedimentation rate (test for inflammation)
- Rheumatoid Factor (indicator of autoimmune disorders)
There are also blood tests specific to inner ear disorders:
- Anti-cochlear antibody test (testing for antibodies against cochlear cells)
- Lymphocyte Transformation Assay (testing whether an individual has developed a T-cell response against a certain drug)
Though it has also been proposed that the use of anti heat shock protein 70 antibodies may be useful in the detection and diagnosis of AIED, there is not enough evidence to confirm the reliability of this method.
Studies have shown that sinusitis is found in about 60% of the cases on the fourth day after the manifestation of sinus. Moreover, patient may be afflicted with an acute sinus disease if OAC is not treated promptly upon detecting clear signs of sinusitis. So, early diagnosis of OAC must be conducted in order to prevent OAF from setting in.
Spontaneous healing of small perforation is expected to begin about 48 hours after tooth extraction and it remains possible during the following two weeks. Patient must consult the dentist as early as possible should a large defect of more than 7mm in diameter or a dogged opening that requires closure is discovered so that appropriate and suitable treatment can be swiftly arranged or referral to Oral Maxillofacial Surgery (OMFS) be made at the local hospital, if required.
A comprehensive preoperative radiographic evaluation is a must as the risk of OAC can increase due to one or more of the following situations :-
- Close relationship between the roots of the maxillary posterior teeth and the sinus floor
- Increased divergence or dilaceration of the roots of the tooth
- Marked pneumatization of the sinus leading to a larger size
- Peri-radicular lesions involving teeth or roots in close association with the sinus floor
Hence, in such cases:
- Avoid using too much of apical pressure during tooth extraction
- Perform surgical extraction with roots sectioning
- Consider referral to OMFS at local hospital
The constellation of anomalies seen with Nasodigitoacoustic syndrome result in a distinct diagnosis. The diagnostic criteria for the disorder are broad distal phalanges of the thumbs and big toes, accompanied by a broad and shortened nose, sensorineural hearing loss and developmental delay, with predominant occurrence in males.
Nasodigitoacoustic syndrome is similar to several syndromes that share its features. Brachydactyly of the distal phalanges, sensorineural deafness and pulmonary stenosis are common with Keutel syndrome. In Muenke syndrome, developmental delay, distal brachydactyly and sensorineural hearing loss are reported; features of Teunissen-Cremers syndrome include nasal aberrations and broadness of the thumbs and big toes, also with brachydactyly. Broad thumbs and big toes are primary characteristics of Rubinstein syndrome.
As part of differential diagnosis, an MRI scan may be done to check for vascular anomalies, tumors, and structural problems like enlarged mastoids. MRI and other types of scan cannot directly detect or measure age-related hearing loss.