Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
The mainstay of treatment consists of thymectomy and immunoglobulin replacement with IVIG (Kelesidis, 2010). Immunodeficiency does not resolve after thymectomy (Arnold, 2015). To treat the autoimmune component of the disease, immune-suppression is sometimes used and it is often challenging to determine if a patient’s symptoms are infectious or autoimmune (Arnold, 2015).
Patients should have serological testing for antibodies to toxoplasma and cytomegalovirus. If receiving a transfusion, CMV negative blood should be used in those with negative serological testing. Live vaccines should also be avoided (Kelesidis, 2010). The CDC recommends pneumococcal, meningococcal, and Hib vaccination in those with diminished humoral and cell-mediated immunity (Hamborsky, 2015).
Some have advocated treating prophylactically with TMP-SMX if CD4 counts are lower than 200 cells/mm^3, similar to AIDS patients (Kelesidis, 2010).
There are no formal diagnostic criteria (Kelleher, 2003) and many informal definitions exist. Most commonly thymoma is present with mixed humoral and cellular immune deficiency. T and B cells are both depleted so patients suffer from both encapsulated organisms as well as opportunistic infections (Miyakis, 2005). Some have defined GS as a subset of common variable immunodeficiency (CVID). Unlike CVID, there are reduced B cells in the periphery in GS (Kelesidis, 2010).
More generally it can be defined as an adult-onset primary immunodeficiency associated with thymoma, hypogammaglobulinemia, diminished B and T cells, and inverted CD4/CD8+ ratio(Kelesidis, 2010).
According to a European registry study, the mean age at onset of symptoms was 26.3 years old. As per the criteria laid out by ESID (European Society for Immunodeficiencies) and PAGID (Pan-American Group for Immunodeficiency), CVID is diagnosed if:
- the person presents with a marked decrease of serum IgG levels (<4.5 g/L) and a marked decrease below the lower limit of normal for age in at least one of the isotypes IgM or IgA;
- the person is four years of age or older;
- the person lacks antibody immune response to protein antigens or immunization.
Diagnosis is chiefly by exclusion, i.e. alternative causes of hypogammaglobulinemia, such as X-linked agammaglobulinemia, must be excluded before a diagnosis of CVID can be made.
Diagnosis is difficult because of the diversity of phenotypes seen in people with CVID. For example, serum immunoglobulin levels in people with CVID vary greatly. Generally, people can be grouped as follows: no immunoglobulin production, immunoglobulin (Ig) M production only, or both normal IgM and IgG production. Additionally, B cell numbers are also highly variable. 12% of people have no detectable B cells, 12% have reduced B cells, and 54% are within the normal range. In general, people with CVID display higher frequencies of naive B cells and lower frequencies of class-switched memory B cells. Frequencies of other B cell populations, such as IgD memory B cells, transitional B cells, and CD21 B cells, are also affected, and are associated with specific disease features. Although CVID is often thought of as a serum immunoglobulin and B cell-mediated disease, T cells can display abnormal behavior. Affected individuals typically present with low frequencies of CD4, a T-cell marker, and decreased circulation of regulatory T cells and iNKT cell. Notably, approximately 10% of people display CD4 T cell counts lower than 200 cells/mm; this particular phenotype of CVID has been named LOCID (Late Onset Combined Immunodeficiency), and has a poorer prognosis than classical CVID.
The following types of CVID have been identified, and correspond to mutations in different gene segments.
In terms of diagnosis of "humoral immune deficiency" depends upon the following:
- Measure "serum immunoglobulin levels"
- B cell count
- Family medical history
The diagnosis of immunodysregulation polyendocrinopathy enteropathy X-linked syndrome is consistent with the following criteria:
- Clinical examination
- Family history
- Laboratory findings
- Genetic testing
Treatment for "B cell deficiency"(humoral immune deficiency) depends on the cause, however generally the following applies:
- Treatment of infection(antibiotics)
- Surveillance for malignancies
- Immunoglobulin replacement therapy
Available treatment falls into two modalities: treating infections and boosting the immune system.
Prevention of Pneumocystis pneumonia using trimethoprim/sulfamethoxazole is useful in those who are immunocompromised. In the early 1950s Immunoglobulin(Ig) was used by doctors to treat patients with primary immunodeficiency through intramuscular injection. Ig replacement therapy are infusions that can be either subcutaneous or intravenously administrated, resulting in higher Ig levels for about three to four weeks, although this varies with each patient.
In terms of diagnosis for this condition, the following methods/tests are available:
- Endoscopic
- CT scan
- Serum endocrine autoantibody screen
- Histologic test
Early diagnosis of Severe Combined Immunodeficiency is rare because doctors do not routinely count each type of white blood cell in newborns.
The International Union of Immunological Societies recognizes nine classes of primary immunodeficiencies, totaling over 120 conditions. A 2014 update of the classification guide added a 9th category and added 30 new gene defects from the prior 2009 version.
For this condition, differential diagnosis sees that the following should be considered:
- CD25 deficiency
- STAT5b deficiency
- Severe immunodeficiency(combined)
- X-linked thrombocytopenia
Immunosuppressive therapy may be used in "type I" of this condition, ketoconazole can be used for "autoimmune polyendocrine syndrome type I" under certain conditions The component diseases are managed as usual, the challenge is to detect the possibility of any of the syndromes, and to anticipate other manifestations. For example, in a person with known Type 2 autoimmune polyendocrine syndrome but no features of Addison's disease, regular screening for antibodies against 21-hydroxylase may prompt early intervention and hydrocortisone replacement to prevent characteristic crises
In order to ascertain if an individual has activated PI3K delta syndrome, usually one finds atypical levels of immunoglobulins. Methods to determine the condition are the following:
- Genetic testing
- Laboratory findings
- Symptoms exhibited
About half of US states are performing screening for SCID in newborns using real-time quantitative PCR to measure the concentration of T-cell receptor excision circles. Wisconsin and Massachusetts (as of February 1, 2009) screen newborns for SCID. Michigan began screening for SCID in October 2011. Some SCID can be detected by sequencing fetal DNA if a known history of the disease exists. Otherwise, SCID is not diagnosed until about six months of age, usually indicated by recurrent infections. The delay in detection is because newborns carry their mother's antibodies for the first few weeks of life and SCID babies look normal.
The cause of immunodeficiency varies depending on the nature of the disorder. The cause can be either genetic or acquired by malnutrition and poor sanitary conditions. Only for some genetic causes, the exact genes are known. Although there is no true discrimination to who this disease affects, the genes are passed from mother to child, and on occasion from father to child. Women tend not to show symptoms due to their second X chromosome not having the mutation while man are symptomatic, due to having one X chromosome.
Diagnosis of autoimmune disorders largely rests on accurate history and physical examination of the patient, and high index of suspicion against a backdrop of certain abnormalities in routine laboratory tests (example, elevated C-reactive protein). In several systemic disorders, serological assays which can detect specific autoantibodies can be employed. Localised disorders are best diagnosed by immunofluorescence of biopsy specimens. Autoantibodies are used to diagnose many autoimmune diseases. The levels of autoantibodies are measured to determine the progress of the disease.
Investigators at the National Institute of Allergy and Infectious Diseases at the US National Institutes of Health currently have clinical protocols to study new approaches to the diagnosis and treatment of this disorder.
Patients show markedly low immunoglobulin levels of IgG, IgA, and IgM.
Diagnosing SS is complicated by the range of symptoms a patient may manifest, and the similarity between symptoms of SS and those of other conditions. Also, patients who have symptoms of SS approach different specialities regarding their symptoms which make the diagnosis difficult. Since the symptoms of this autoimmune disorder such as dry eyes and dry mouth are very common among people, and mostly observed from the age of 40 and above, it is often mistaken as age-related, thus ignored. However, some medications can also cause symptoms that are similar to those of SS. The combination of several tests, which can be done in a series, can eventually lead to the diagnosis of SS.
SS is usually classified as either 'primary' or 'secondary'. Primary Sjögren syndrome occurs by itself and secondary Sjögren syndrome occurs when another connective tissue disease is present.
Blood tests can be done to determine if a patient has high levels of antibodies that are indicative of the condition, such as antinuclear antibody (ANA) and rheumatoid factor (because SS frequently occurs secondary to rheumatoid arthritis), which are associated with autoimmune diseases. Typical SS ANA patterns are SSA/Ro and SSB/La, of which Anti-SSB/La is far more specific; Anti-SSA/Ro is associated with numerous other autoimmune conditions, but are often present in SS. However, Anti-SSA and Anti-SSB tests are frequently not positive in SS.
The rose bengal test uses a stain that measures state and function of the lacrimal glands. This test involves placing the non-toxic dye rose bengal on the eyes. The dye’s distinctive colour helps in determining the state and functioning of tear film and the rate of tear evaporation. Any distinctive colour change observed will be indicative of SS, but many related diagnostic tools will be used to confirm the condition of SS.
Schirmer's test measures the production of tears: a strip of filter paper is held inside the lower eyelid for five minutes, and its wetness is then measured with a ruler. Producing less than of liquid is usually indicative of SS. This measurement analysis varies among people depending on other eye-related conditions and medications in use when the test is taken. A slit-lamp examination can reveal dryness on the surface of the eye.
Symptoms of dry mouth and dryness in the oral cavity are caused by the reduced production of saliva from the salivary glands (parotid gland, submandibular gland, and sublingual gland). To check the status of salivary glands and the production of saliva, a salivary flow-rate test is performed, in which the person is asked to spit as much as they can into a cup, and the resulting saliva sample is collected and weighed. This test's results can determine whether the salivary glands are functioning adequately. Not enough saliva produced could mean the person has SS. An alternative test is non-stimulated whole saliva flow collection, in which the person spits into a test tube every minute for 15 minutes. A resultant collection of less than is considered a positive result.
A lip/salivary gland biopsy takes a tissue sample that can reveal lymphocytes clustered around salivary glands, and damage to these glands due to inflammation. This test involves removing a sample of tissue from a person’s inner lip/salivary gland and examining it under a microscope. In addition, a sialogram, a special X-ray test, is performed to see if any blockage is present in the salivary gland ducts (i.e. parotid duct) and the amount of saliva that flows into the mouth.
Also, a radiological procedure is available as a reliable and accurate test for SS. A contrast agent is injected into the parotid duct, which opens from the cheek into the vestibule of the mouth opposite the neck of the upper second molar tooth. Histopathology studies should show focal lymphocytic sialadenitis. Objective evidence of salivary gland involvement is tested through ultrasound examinations, the level of unstimulated whole salivary flow, a parotid sialography or salivary scintigraphy, and autoantibodies against Ro (SSA) and/or La (SSB) antigens.
SS can be excluded from people with past head and neck radiation therapy, acquired immunodeficiency syndrome (AIDS), pre-existing lymphoma, sarcoidosis, graft-versus-host disease, and use of anticholinergic drugs.
The differential diagnosis for this condition consists of acquired immune deficiency syndrome and severe combined immunodeficiency syndrome
In terms of treatment the following are done to manage the IPEX syndrome in those affected individuals(corticosteroids are the first treatment that is used):
- TPN(nutritional purpose)
- Cyclosporin A and FK506
- Sirolimus(should FK506 prove non-effective)
- Granulocyte colony stimulating factor
- Bone marrow transplant
- Rituximab
The diagnosis of Nezelof syndrome will indicate a deficiency of T-cells, additionally in ascertaining the condition the following is done:
Patients exhibit increased susceptibility to bacterial and viral infections, especially from common serotype human papilloma virus, resulting in warts on the hands and feet starting in childhood. Myelokathexis refers to retention (kathexis) of neutrophils in the bone marrow (myelo). In addition, lymphocytes and IgG antibody levels (gammaglobulins) are often deficient.