Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
For people considered likely to have PAH based on the above tests, the specific associated condition is then determined based on the physical examination, medical/family history and further specific diagnostic tests (for example, serological tests to detect underlying connective tissue disease, HIV infection or hepatitis, ultrasonography to confirm the presence of portal hypertension, echocardiography/cardiac magnetic resonance imaging for congenital heart disease, laboratory tests for schistosomiasis, and high resolution CT for PVOD and pulmonary capillary hemangiomatosis). Routine lung biopsy is discouraged in patients with PAH, because of the risk to the patient and because the findings are unlikely to alter the diagnosis and treatment.
Although pulmonary arterial pressure (PAP) can be estimated on the basis of echocardiography, pressure measurements with a Swan-Ganz catheter inserted through the right side of the heart provide the most definite assessment.[42] Pulmonary hypertension is defined as a mean PAP of at least 25 mm Hg (3300 Pa) at rest, and PAH is defined as precapillary pulmonary hypertension (i.e. mean PAP ≥ 25 mm Hg with pulmonary arterial occlusion pressure [PAOP] ≤ 15 mm Hg and pulmonary vascular resistance [PVR] > 3 Wood Units). PAOP and PVR cannot be measured directly with echocardiography. Therefore, diagnosis of PAH requires right-sided cardiac catheterization. A Swan-Ganz catheter can also measure the cardiac output; this can be used to calculate the cardiac index, which is far more important in measuring disease severity than the pulmonary arterial pressure.
"Mean" PAP (mPAP) should not be confused with systolic PAP (sPAP), which is often reported on echocardiogram reports. A systolic pressure of 40 mm Hg typically implies a mean pressure of more than 25 mm Hg. Roughly, mPAP = 0.61•sPAP + 2.
Early diagnosis still remains a challenge in CTEPH, with a median time of 14 months between symptom onset and diagnosis in expert centres. A suspicion of PH is often raised by echocardiography, but an invasive right heart catheterisation is required to confirm it. Once PH is diagnosed, the presence of thromboembolic disease requires imaging. The recommended diagnostic algorithm stresses the importance of initial investigation using an echocardiogram and V/Q scan and confirmation with right heart catheter and pulmonary angiography (PA).
Both V/Q scanning and modern multidetector CT angiography (CTPA) may be accurate methods for the detection of CTEPH, with excellent diagnostic efficacy in expert hands (sensitivity, specificity, and accuracy of 100%, 93.7%, and 96.5% for V/Q and 96.1%, 95.2%, and 95.6% for CTPA). However, CTPA alone cannot exclude the disease, but may help identify pulmonary artery distension resulting in left main coronary artery compression, pulmonary parenchymal lesions (e.g. as complications from previous pulmonary infarctions), and bleeding from bronchial collateral arteries. Today, the gold standard imaging remains invasive pulmonary angiography (PAG) using native angiograms or a digital subtraction technique.
The diagnosis of portopulmonary hypertension is based on hemodynamic criteria:
1. . Portal hypertension and/or liver disease (clinical diagnosis—ascites/varices/splenomegaly)
2. . Mean pulmonary artery pressure—MPAP > 25 mmHg at rest
3. . Pulmonary vascular resistance—PVR > 240 dynes s cm−5
4. . Pulmonary artery occlusion pressure— PAOP 12 mmHg where TPG = MPAP − PAOP.
The diagnosis is usually first suggested by a transthoracic echocardiogram, part of the standard pre-transplantation work-up. Echocardiogram estimated pulmonary artery systolic pressures of 40 to 50 mm Hg are used as a screening cutoff for PPH diagnosis, with a sensitivity of 100% and a specificity as high as 96%. The negative predictive value of this method is 100% but the positive predictive value is 60%. Thereafter, these patients are referred for pulmonary artery catheterization.
The limitations of echocardiography are related to the derivative nature of non-invasive PAP estimation. The measurement of PAP by echocardiogram is made using a simplified Bernoulli equation. High cardiac index and pulmonary capillary wedge pressures, however, may lead to false positives by this standard. By one institution’s evaluation, the correlation between estimated systolic PAP and directly measured PAP was poor, 0.49. For these reasons, right heart catheterization is needed to confirm the diagnosis.
Historically the prognosis for patients with untreated CTEPH was poor, with a 5-year survival of 40 mmHg at presentation. More contemporary data from the European CTEPH registry have demonstrated a 70% 3-year survival in patients with CTEPH who do not undergo the surgical procedure of pulmonary endarterectomy (PEA). Recent data from an international CTEPH registry demonstrate that mortality in CTEPH is associated with New York Heart Association (NYHA) functional class IV, increased right atrial pressure, and a history of cancer. Furthermore, comorbidities such as coronary disease, left heart failure, and chronic obstructive pulmonary disease (COPD) are risk factors for mortality.
It can be diagnosed with CT scan, angiography, transesophageal echocardiography, or cardiac MRI. Unfortunately, less invasive and expensive testing, such as transthoracic echocardiography and CT scanning are generally less sensitive.
For most patients, health care providers diagnose high blood pressure when blood pressure readings are consistently 140/90 mmHg or above. A blood pressure test can be done in a health care provider’s office or clinic. To track blood pressure readings over a period of time, the health care provider may ask the patient to come into the office on different days and at different times. The health care provider also may ask the patient to check readings at home or at other locations that have blood pressure equipment and to keep a written log of results. The health care provider usually takes 2–3 readings at several medical appointments to diagnose high blood pressure. Using the results of the blood pressure test, the health care provider will diagnose prehypertension or high blood pressure if:
- For an adult, systolic or diastolic readings are consistently higher than 120/80 mmHg.
- A child’s blood pressure numbers are outside average numbers for children of the same age, gender, and height.
Once the health care provider determines the severity, he or she can order additional tests to determine if the blood pressure is due to other conditions or medicines or if there is primary high blood pressure. Health care providers can use this information to develop a treatment plan.
Following diagnosis, mean survival of patients with PPH is 15 months. The survival of those with cirrhosis is sharply curtailed by PPH but can be significantly extended by both medical therapy and liver transplantation, provided the patient remains eligible.
Eligibility for transplantation is generally related to mean pulmonary artery pressure (PAP). Given the fear that those PPH patients with high PAP will suffer right heart failure following the stress of post-transplant reperfusion or in the immediate perioperative period, patients are typically risk-stratified based on mean PAP. Indeed, the operation-related mortality rate is greater than 50% when pre-operative mean PAP values lie between 35 and 50 mm Hg; if mean PAP exceeds 40-45, transplantation is associated with a perioperative mortality of 70-80% (in those cases without preoperative medical therapy). Patients, then, are considered to have a high risk of perioperative death once their mean PAP exceeds 35 mm_Hg.
Survival is best inferred from published institutional experiences. At one institution, without treatment, 1-year survival was 46% and 5-year survival was 14%. With medical therapy, 1-year survival was 88% and 5-year survival was 55%. Survival at 5 years with medical therapy followed by liver transplantation was 67%. At another institution, of the 67 patients with PPH from 1652 total cirrhotics evaluated for transplant, half (34) were placed on the waiting list. Of these, 16 (48%) were transplanted at a time when 25% of all patients who underwent full evaluation received new livers, meaning the diagnosis of PPH made a patient twice as likely to be transplanted, once on the waiting list. Of those listed for transplant with PPH, 11 (33%) were eventually removed because of PPH, and 5 (15%) died on the waitlist. Of the 16 transplanted patients with PPH, 11 (69%) survived for more than a year after transplant, at a time when overall one-year survival in that center was 86.4%. The three year post-transplant survival for patients with PPH was 62.5% when it was 81.02% overall at this institution.
Hypertension is diagnosed on the basis of a persistently high resting blood pressure. Traditionally, the National Institute of Clinical Excellence recommends three separate resting sphygmomanometer measurements at monthly intervals. The American Heart Association recommends at least three resting measurements on at least two separate health care visits.
For an accurate diagnosis of hypertension to be made, it is essential for proper blood pressure measurement technique to be used. Improper measurement of blood pressure is common and can change the blood pressure reading by up to 10 mmHg, which can lead to misdiagnosis and misclassification of hypertension. Correct blood pressure measurement technique involves several steps. Proper blood pressure measurement requires the person whose blood pressure is being measured to sit quietly for at least five minutes which is then followed by application of a properly fitted blood pressure cuff to a bare upper arm. The person should be seated with their back supported, feet flat on the floor, and with their legs uncrossed. The person whose blood pressure is being measured should avoid talking or moving during this process. The arm being measured should be supported on a flat surface at the level of the heart. Blood pressure measurement should be done in a quiet room so the medical professional checking the blood pressure can hear the Korotkoff sounds while listening to the brachial artery with a stethoscope for accurate blood pressure measurements. The blood pressure cuff should be deflated slowly (2-3 mmHg per second) while listening for the Korotkoff sounds. The bladder should be emptied before a person's blood pressure is measured since this can increase blood pressure by up to 15/10 mmHg. Multiple blood pressure readings (at least two) spaced 1-2 minutes apart should be obtained to ensure accuracy. Ambulatory blood pressure monitoring over 12 to 24 hours is the most accurate method to confirm the diagnosis.
An exception to this is those with very high blood pressure readings especially when there is poor organ function. Initial assessment of the hypertensive people should include a complete history and physical examination. With the availability of 24-hour ambulatory blood pressure monitors and home blood pressure machines, the importance of not wrongly diagnosing those who have white coat hypertension has led to a change in protocols. In the United Kingdom, current best practice is to follow up a single raised clinic reading with ambulatory measurement, or less ideally with home blood pressure monitoring over the course of 7 days. The United States Preventative Services Task Force also recommends getting measurements outside of the healthcare environment. Pseudohypertension in the elderly or noncompressibility artery syndrome may also require consideration. This condition is believed to be due to calcification of the arteries resulting in abnormally high blood pressure readings with a blood pressure cuff while intra arterial measurements of blood pressure are normal. Orthostatic hypertension is when blood pressure increases upon standing.
Once the diagnosis of hypertension has been made, healthcare providers should attempt to identify the underlying cause based on risk factors and other symptoms, if present. Secondary hypertension is more common in preadolescent children, with most cases caused by kidney disease. Primary or essential hypertension is more common in adolescents and has multiple risk factors, including obesity and a family history of hypertension. Laboratory tests can also be performed to identify possible causes of secondary hypertension, and to determine whether hypertension has caused damage to the heart, eyes, and kidneys. Additional tests for diabetes and high cholesterol levels are usually performed because these conditions are additional risk factors for the development of heart disease and may require treatment.
Serum creatinine is measured to assess for the presence of kidney disease, which can be either the cause or the result of hypertension. Serum creatinine alone may overestimate glomerular filtration rate and recent guidelines advocate the use of predictive equations such as the Modification of Diet in Renal Disease (MDRD) formula to estimate glomerular filtration rate (eGFR). eGFR can also provide a baseline measurement of kidney function that can be used to monitor for side effects of certain anti-hypertensive drugs on kidney function. Additionally, testing of urine samples for protein is used as a secondary indicator of kidney disease. Electrocardiogram (EKG/ECG) testing is done to check for evidence that the heart is under strain from high blood pressure. It may also show whether there is thickening of the heart muscle (left ventricular hypertrophy) or whether the heart has experienced a prior minor disturbance such as a silent heart attack. A chest X-ray or an echocardiogram may also be performed to look for signs of heart enlargement or damage to the heart.
Pulmonary veno-occlusive disease can only be well diagnosed with a lung biopsy. CT scans may show characteristic findings such as ground-glass opacities in centrilobular distribution, and mediastinal lymphadenopathy, but these findings are non-specific and may be seen in other conditions. However, pulmonary hypertension (revealed via physical examination), in the presence of pleural effusion (done via CT scan) usually indicates a diagnosis of pulmonary veno-occlusive disease. The prognosis indicates usually a 2-year (24 month) life expectancy after diagnosis.
A "Partial anomalous pulmonary venous connection" (or "Partial anomalous pulmonary venous drainage" or "Partial anomalous pulmonary venous return") is a congenital defect where the left atrium is the point of return for the blood from some (but not all) of the pulmonary veins.
It is less severe than total anomalous pulmonary venous connection which is a life-threatening anomaly requiring emergent surgical correction, usually diagnosed in the first few days of life. Partial anomalous venous connection may be diagnosed at any time from birth to old age. The severity of symptoms, and thus the likelihood of diagnosis, varies significantly depending on the amount of blood flow through the anomalous connections. In less severe cases, with smaller amounts of blood flow, diagnosis may be delayed until adulthood, when it can be confused with other causes of pulmonary hypertension. There is also evidence that a significant number of mild cases are never diagnosed, or diagnosed incidentally. It is associated with other vascular anomalies, and some genetic syndromes such as Turner syndrome.
In people aged 18 years or older hypertension is defined as a systolic or a diastolic blood pressure measurement consistently higher than an accepted normal value (this is above 129 or 139 mmHg systolic, 89 mmHg diastolic depending on the guideline). Other thresholds are used (135 mmHg systolic or 85 mmHg diastolic) if measurements are derived from 24-hour ambulatory or home monitoring. Recent international hypertension guidelines have also created categories below the hypertensive range to indicate a continuum of risk with higher blood pressures in the normal range. The "Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure" (JNC7) published in 2003 uses the term prehypertension for blood pressure in the range 120–139 mmHg systolic or 80–89 mmHg diastolic, while European Society of Hypertension Guidelines (2007) and British Hypertension Society (BHS) IV (2004) use optimal, normal and high normal categories to subdivide pressures below 140 mmHg systolic and 90 mmHg diastolic. Hypertension is also sub-classified: JNC7 distinguishes hypertension stage I, hypertension stage II, and isolated systolic hypertension. Isolated systolic hypertension refers to elevated systolic pressure with normal diastolic pressure and is common in the elderly. The ESH-ESC Guidelines (2007) The results also demonstrated a correlation of chronically low vitamin D levels with a higher chance of becoming hypertensive. Supplementation with vitamin D over 18 months in normotensive individuals with vitamin D deficiency did not significantly affect blood pressure.
Regular physical exercise reduces blood pressure. The UK National Health Service advises 150 minutes (2 hours and 30 minutes) of moderate-intensity aerobic activity per week to help prevent hypertension.
In addition to evaluating the symptoms above, the health care provider may find decreased or no blood pressure in the arm or leg.
Tests to determine any underlying cause for thrombosis or embolism and to confirm presence of the obstruction may include:
- Doppler ultrasound, especially duplex ultrasonography. It may also involve transcranial doppler exam of arteries to the brain
- Echocardiography, sometimes involving more specialized techniques such as Transesophageal echocardiography (TEE) or myocardial contrast echocardiography (MCE) to diagnose myocardial infarction
- Arteriography of the affected extremity or organ Digital subtraction angiography is useful in individuals where administration of radiopaque contrast material must be kept to a minimum.
- Magnetic resonance imaging (MRI)
- Blood tests for measuring elevated enzymes in the blood, including cardiac-specific troponin T and/or troponin I, myoglobins, and creatine kinase isoenzymes. These indicate embolisation to the heart that has caused myocardial infarction. Myoglobins and creatine kinase are also elevated in the blood in embolisation in other locations.
- Blood cultures may be done to identify the organism responsible for any causative infection
- Electrocardiography (ECG) for detecting myocardial infarction
- Angioscopy using a flexible fiberoptic catheter inserted directly into an artery.
This has a good prognosis if it is reversible. Causes include polycythemia and hyperfibrinogenemia.
There is no one single test for confirming that breathlessness is caused by pulmonary edema; indeed, in many cases, the cause of shortness of breath is probably multifactorial.
Low oxygen saturation and disturbed arterial blood gas readings support the proposed diagnosis by suggesting a pulmonary shunt. Chest X-ray will show fluid in the alveolar walls, Kerley B lines, increased vascular shadowing in a classical batwing peri-hilum pattern, upper lobe diversion (increased blood flow to the superior parts of the lung), and possibly pleural effusions. In contrast, patchy alveolar infiltrates are more typically associated with noncardiogenic edema
Lung ultrasound, employed by a healthcare provider at the point of care, is also a useful tool to diagnose pulmonary edema; not only is it accurate, but it may quantify the degree of lung water, track changes over time, and differentiate between cardiogenic and non-cardiogenic edema.
Especially in the case of cardiogenic pulmonary edema, urgent echocardiography may strengthen the diagnosis by demonstrating impaired left ventricular function, high central venous pressures and high pulmonary artery pressures.
Blood tests are performed for electrolytes (sodium, potassium) and markers of renal function (creatinine, urea). Liver enzymes, inflammatory markers (usually C-reactive protein) and a complete blood count as well as coagulation studies (PT, aPTT) are also typically requested. B-type natriuretic peptide (BNP) is available in many hospitals, sometimes even as a point-of-care test. Low levels of BNP (<100 pg/ml) suggest a cardiac cause is unlikely.
Treatment aims to increase the amount of oxygen in the blood and reverse any causes of hypoxia.
- oxygen therapy
- mechanical ventilation
- Nitrous Oxide (NO·) Inhalation
- Prostaglandins (intravenous)
The therapies available to manage PPHN include the high frequency ventilation, surfactant instillation, inhaled nitric oxide, and extracorporeal membrane oxygenation. These expensive and/or invasive modalities are unavailable in the developing countries where the frequency and mortality of PPHN is likely to be much higher due to higher incidence of asphyxia and sepsis. In developing countries, the medical facilities are usually supplied with outdated equipment that was initially donated. "For people in developing countries, basic medical supplies are luxuries that are simply not available or not affordable. Doctors and nurses must constantly make do - washing and reusing "disposable" gloves and syringes, or substituting inappropriate materials such as fishing line or sewing thread for suture- or patients must go without needed care. In many countries patients must bring their own supplies, even acquire their own medicines, before treatment can be given." The limitations made it necessary to search for cheaper therapies, assuring quick effectiveness and stabilization of the patient going through a very high-risk situation. The treatments are chosen on the basis of low cost, low-tech, wide availability, and safety in the hands of non-professionals. Therefore, oral sildenafil citrate, has been the alternative way of therapy. The cost comparison shows that sildenafil is lower in cost than iNO and more readily available. There is improvement in oxygenation when oral sildenifal is administered according to the studies found in the Official Journal of the American Academy of Pediatric. The positive research results for varies studies indicates that oral sildenifal is a feasible source to improve oxygenation and survival in critical ill infants with PPHN secondary to parenchymal lung disease in centers without access to high-frequency ventilation, iNO, or ECMO.
The incidence of clinical HAPE in unacclimatized travelers exposed to high altitude (~) appears to be less than 1%. The U.S. Army Pike's Peak Research Laboratory has exposed sea-level-resident volunteers rapidly and directly to high altitude; during 30 years of research involving about 300 volunteers (and over 100 staff members), only three have been evacuated with suspected HAPE.
Treatments for primary pulmonary hypertension such as prostacyclins and endothelin receptor antagonists can be fatal in people with PVOD due to the development of severe pulmonary edema, and worsening symptoms after initiation of these medications may be a clue to the diagnosis of pulmonary veno occlusive disease.
The definitive therapy is lung transplantation, though transplant rejection is always a possibility, in this measures must be taken in terms of appropriate treatment and medication.
As a general rule, any diver who has breathed gas under pressure at any depth who surfaces unconscious, loses consciousness soon after surfacing, or displays neurological symptoms within about 10 minutes of surfacing should be assumed to be suffering from arterial gas embolism.
Symptoms of arterial gas embolism may be present but masked by environmental effects such as hypothermia, or pain from other obvious causes. Neurological examination is recommended when there is suspicion of lung overexpansion injury. Symptoms of decompression sickness may be very similar to, and confused with, symptoms of arterial gas embolism, however, treatment is basically the same. Discrimination between gas embolism and decompression sickness may be difficult for injured divers, and both may occur simultaneously. Dive history may eliminate decompression sickness in many cases, and the presence of symptoms of other lung overexpansion injury would raise the probability of gas embolism.
Prevention of atherosclerosis, which is a major risk factor of arterial embolism, can be performed e.g. by dieting, physical exercise and smoking cessation.
In case of high risk for developing thromboembolism, antithrombotic medication such as warfarin or coumadin may be taken prophylactically. Antiplatelet drugs may also be needed.
In treating pulmonary insufficiency, it should be determined if pulmonary hypertension is causing the problem to therefore begin the most appropriate therapy as soon as possible (primary pulmonary hypertension or secondary pulmonary hypertension due to thromboembolism). Furthermore, pulmonary insufficiency is generally treated by addressing the underlying condition, in certain cases, the pulmonary valve may be surgically replaced.
The diagnosis can be confirmed by lung biopsy. A videoscopic assisted thoracoscopic wedge biopsy (VATS) under general anesthesia may be necessary to obtain enough tissue to make an accurate diagnosis. This kind of biopsy involves placement of several tubes through the chest wall, one of which is used to cut off a piece of lung to send for evaluation. The removed tissue is examined histopathologically by microscopy to confirm the presence and pattern of fibrosis as well as presence of other features that may indicate a specific cause e.g. specific types of mineral dust or possible response to therapy e.g. a pattern of so-called non-specific interstitial fibrosis.
Misdiagnosis is common because, while overall pulmonary fibrosis is not rare, each individual type of pulmonary fibrosis is uncommon and the evaluation of patients with these diseases is complex and requires a multidisciplinary approach. Terminology has been standardized but difficulties still exist in their application. Even experts may disagree with the classification of some cases.
On spirometry, as a restrictive lung disease, both the FEV1 (forced expiratory volume in 1 second) and FVC (forced vital capacity) are reduced so the FEV1/FVC ratio is normal or even increased in contrast to obstructive lung disease where this ratio is reduced. The values for residual volume and total lung capacity are generally decreased in restrictive lung disease.
In those with underlying heart disease, effective control of congestive symptoms prevents pulmonary edema.
Dexamethasone is in widespread use for the prevention of high altitude pulmonary edema. Sildenafil is used as a preventive treatment for altitude-induced pulmonary edema and pulmonary hypertension, the mechanism of action is via phosphodiesterase inhibition which raises cGMP, resulting in pulmonary arterial vasodilation and inhibition of smooth muscle cell proliferation. While this effect has only recently been discovered, sildenafil is already becoming an accepted treatment for this condition, in particular in situations where the standard treatment of rapid descent has been delayed for some reason.
If a patent foramen ovale (PFO) is suspected, an examination by echocardiography may be performed to diagnose the defect. In this test, very fine bubbles are introduced into a patient's vein by agitating saline in a syringe to produce the bubbles, then injecting them into an arm vein. A few seconds later, these bubbles may be clearly seen in the ultrasound image, as they travel through the patient's right atrium and ventricle. At this time, bubbles may be observed directly crossing a septal defect, or else a patent foramen ovale may be opened temporarily by asking the patient to perform the Valsalva maneuver while the bubbles are crossing through the right heart – an action which will open the foramen flap and show bubbles passing into the left heart. Such bubbles are too small to cause harm in the test, but such a diagnosis may alert the patient to possible problems which may occur from larger bubbles, formed during activities like underwater diving, where bubbles may grow during decompression. A PFO test may be recommended for divers intending to expose themselves to relatively high decompression stress in deep technical diving.