Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Hyporeflexia refers to below normal or absent reflexes (areflexia). It can be detected through the use of a reflex hammer. It is the opposite of hyperreflexia.
Hyporeflexia is generally associated with a lower motor neuron deficit (at the alpha motor neurons from spinal cord to muscle), whereas hyperreflexia is often attributed to upper motor neuron lesions (along the long, motor tracts from the brain). The upper motor neurons are thought to inhibit the reflex arc, which is formed by sensory neurons from intrafusal fibers of muscles, lower motor neurons (including alpha and gamma motor fibers) and appurtenant interneurons. Therefore, damage to lower motor neurons will subsequently result in hyporeflexia and/or areflexia.
Note that, in spinal shock, which is commonly seen in the transection of the spinal cord (Spinal cord injury), areflexia can transiently occur below the level of the lesion and can , after some time, become hyperreflexic. Furthermore, cases of severe muscle atrophy or destruction could render the muscle too weak to show any reflex and should not be confused with a neuronal cause.
Hyporeflexia may have other causes, including hypothyroidism, electrolyte imbalance (e.g. excess magnesium), drug induced (e.g. the symptoms of benzodiazepine intoxication include confusion, slurred speech, ataxia, drowsiness, dyspnea, and hyporeflexia).
Diseases associated with hyporeflexia include
- Centronuclear myopathy
- Guillain–Barré syndrome
- Lambert-Eaton myasthenic syndrome
- Polyneuropathy (Achilles and plantar reflexes)
Most common causes of lower motor neuron injuries are trauma to peripheral nerves that serve the axons – a virus that selectively attacks ventral horn cells.
Disuse atrophy of the muscle occurs i.e., shrinkage of muscle fibre finally replaced by fibrous tissue (fibrous muscle)
Other causes include Guillain–Barré syndrome, "C. botulism", polio, and cauda equina syndrome; another common cause of lower motor neuron degeneration is amyotrophic lateral sclerosis.
The extensor Babinski reflex is usually absent. Muscle paresis/paralysis, hypotonia/atonia, and hyporeflexia/areflexia are usually seen immediately following an insult. Muscle wasting, fasciculations and fibrillations are typically signs of end-stage muscle denervation and are seen over a longer time period. Another feature is the segmentation of symptoms – only muscles innervated by the damaged nerves will be symptomatic.
Detection of the disorder is possible with an organic acid analysis of the urine. Patients with SSADH deficiency will excrete high levels of GHB but this can be difficult to measure since GHB has high volatility and may be obscured on gas chromatography or mass spectrometry studies by a high urea peak. Other GABA metabolites can also be identified in urine such as glycine. Finally, succinic semialdehyde dehydrogenase levels can be measured in cultured leukocytes of the patient. This occurs due to the accumulation of 4,5-dihydroxyhexanoic acid which is normally undetectable in mammalian tissues but is characteristic of SSADH deficiency. This agent can eventually compromise the pathways of fatty acid, glycine, and pyruvate metabolism, and then become detectable in patients' leukocytes. Such enzyme levels can also be compared to non-affected parents and siblings.
Currently, no treatment slows the neurodegeneration in any of the neuroacanthocytosis disorders. Medication may be administered to decrease the involuntary movements produced by these syndromes. Antipsychotics are used to block dopamine, anticonvulsants treat seizures and botulinum toxin injections may control dystonia. Patients usually receive speech, occupational and physical therapies to help with the complications associated with movement. Sometimes, physicians will prescribe antidepressants for the psychological problems that accompany neuroacanthocytosis. Some success has been reported with Deep brain stimulation.
Mouthguards and other physical protective devices may be useful in preventing damage to the lips and tongue due to the orofacial chorea and dystonia typical of chorea acanthocytosis.
Spinal shock was first defined by Whytt in 1750 as a loss of accompanied by motor paralysis with initial loss but gradual recovery of reflexes, following a spinal cord injury (SCI) – most often a complete transection. Reflexes in the spinal cord below the level of injury are depressed (hyporeflexia) or absent (areflexia), while those above the level of the injury remain unaffected. The 'shock' in spinal shock does not refer to circulatory collapse, and should not be confused with neurogenic shock, which is life-threatening
Cranial computed topography, magnetic resonance imaging, and flurodeoxyglucose positron emission topography are just some of the neuroimaging modalities that have been used to diagnose patients with SSADH deficiency. On the basis of 29 previously published cases that had imaging results available, there were some common abnormalities found. These included increased T2-weighted signal abnormalities involving the globus pallidi bilaterally and symmetrically as well as the presence of subcortical white matter. Similar abnormalities have been identified in the brainstem and cerebellar dentate nucleus.
Signal intensity on a T2 image may be a result of edema or an inflammatory response. Because this type of imaging is a water detecting sequence, any form of calcification or mineralization would also appear dark, thus explaining why accumulation of extra blood or fluid would appear bright on a T2 image. Another explanation for signal intensity may be demyelination since the globus pallidi are traversed by a number of myelinated axons, thus confirming Ren and Mody’s 2003 work proving that repeated exposure of GHB to MAP kinase affected myelin expression, thus causing the numerous neurological dysfunctions seen in SSADH deficiency patients. Ultimately, because the globus pallidus is intimately linked with the basal ganglia and thalamus, it would be expected that some of the motor dysfunctions seen in SSADH patients such as ataxia and hyporeflexia would be common.
At present, Nemaline myopathy does not have a cure. Nemaline myopathy is a very rare disease that only effects 1 out of 50,000 on average, although recent studies show that this number is even smaller. There are a number of treatments to minimize the symptoms of the disease. The treatments and procedures to help patients with nemaline myopathy vary depending on the severity of the disease. A possible accommodation could be the use of a stabilizer, such as a brace. Other means include moderate stretching and moderate exercise to help target muscles maintain maximum health.
As people with NM grow and develop throughout their lives, it is important for them to see a variety of health professionals regularly, including a neurologist, physical therapist, and others, such as speech therapists and psychologists, to help both the patient and family adjust to everyday life.
Research is underway worldwide to increase scientific understanding of these disorders as well to identify prevention and treatment methods. Known genetic mutations provide a basis for studying some of the conditions.
New research resources have become available for the NM community, such as the CMDIR (registry) and the CMD-TR (biorepository). These two resources connect families and individuals interested in participating in research with the scientists that aim to treat or cure NM. Some research on NM seeks to better understand the molecular effects the gene mutations have on muscle cells and the rest of the body and to observe any connections NM may have to other diseases and health complications.
Myelopathy is primarily diagnosed by clinical exam findings. Because the term "myelopathy" describes a clinical syndrome that can be caused by many pathologies the differential diagnosis of myelopathy is extensive. In some cases the onset of myelopathy is rapid, in others, such as CSM, the course may be insidious with symptoms developing slowly over a period of months. As a consequence, the diagnosis of CSM is often delayed. As the disease is thought to be progressive, this may impact negatively on outcome.
Once the clinical diagnosis "myelopathy" has been established, the underlying cause needs to be investigated. Most commonly this involves the use of medical imaging techniques. The best way of visualising the spinal cord is Magnetic Resonance Imaging (MRI). Apart from T1 and T2 MRI images, which are commonly used for routine diagnosis, more recently the use quantitative MRI signals is being investigated. Further imaging modalities used for evaluating myelopathy include plain X-rays for detecting arthritic changes of the bones, and Computer Tomography, which is often used for pre-operative planning of surgical interventions for cervical spondylotic myelopathy. Angiography is used to examine blood vessels in suspected cases of vascular myelopathy.
The presence and severity of myelopathy can also be evaluated by means of Transcranial Magnetic Stimulation (TMS), a neurophysiological method that allows the measurement of the time required for a neural impulse to cross the pyramidal tracts, starting from the cerebral cortex and ending at the anterior horn cells of the cervical, thoracic or lumbar spinal cord. This measurement is called "Central Conduction Time" ("CCT"). TMS can aid physicians to:
- determine whether myelopathy exists
- identify the level of the spinal cord where myelopathy is located. This is especially useful in cases where more than two lesions may be responsible for the clinical symptoms and signs, such as in patients with two or more cervical disc hernias
- follow-up the progression of myelopathy in time, for example before and after cervical spine surgery
TMS can also help in the differential diagnosis of different causes of pyramidal tract damage.
Ditunno et al. proposed a four-phase model for spinal shock in 2004 as follows:
Phase 1 is characterized by a complete loss—or weakening—of all reflexes below the SCI. This phase lasts for a day. The neurons involved in various reflex arcs normally receive a basal level of excitatory stimulation from the brain. After an SCI, these cells lose this input, and the neurons involved become hyperpolarized and therefore less responsive to stimuli.
Phase 2 occurs over the next two days, and is characterized by the return of some, but not all, reflexes below the SCI. The first reflexes to reappear are polysynaptic in nature, such as the bulbocavernosus reflex. Monosynaptic reflexes, such as the deep tendon reflexes, are not restored until Phase 3. Restoration of reflexes is not rostral to caudal as previously (and commonly) believed, but instead proceeds from polysynaptic to monosynaptic. The reason reflexes return is the hypersensitivity of reflex muscles following denervation – more receptors for neurotransmitters are expressed and are therefore easier to stimulate.
Phases 3 and 4 are characterized by hyperreflexia, or abnormally strong reflexes usually produced with minimal stimulation. Interneurons and lower motor neurons below the SCI begin sprouting, attempting to re-establish synapses. The first synapses to form are from shorter axons, usually from interneurons – this categorizes Phase 3. Phase 4 on the other hand, is soma-mediated, and will take longer for the soma to transport various growth factors, including proteins, to the end of the axon.
The treatment and prognosis of myelopathy depends on the underlying cause: myelopathy caused by infection requires medical treatment with pathogen specific antibiotics. Similarly, specific treatments exist for multiple sclerosis, which may also present with myelopathy. As outlined above, the most common form of myelopathy is secondary to degeneration of the cervical spine. Newer findings have challenged the existing controversy with respect to surgery for cervical spondylotic myelopathy by demonstrating that patients benefit from surgery.
CMV polyradiculomyelopathy (PRAM) is one of the five distinct neurological syndromes caused by CMV in HIV/AIDS. It causes subacute ascending lower extremity weakness with paresthesias and radicular pain, hyporeflexia or areflexia, and urinary retention. It has been suggested that CMV polyradiculomyelopathy should be treated with both ganciclovir and foscarnet in patients who develop the disease while taking either of these drugs.
The amount of potassium deficit can be calculated using the following formula:
Meanwhile, the daily body requirement of potassium is calculated by multiplying 1 mmol to body weight in kilogrammes. Adding potassium deficit and daily potassium requirement would give the total amount of potassium need to be corrected in mmol. Dividing mmol by 13.4 will give the potassium in grams.
Common diagnostic techniques include:
- MRIs
- CAT scans
- blood samples.
Blood samples are assessed for the absence or presence of aldosterone and cortisol. Physical examinations are also useful in patients in order to examine vision, skin pigmentation, how the body replaces steroids, and the cranial nerves. Recent advancements in high-resolution MRIs allow for adenomas to be detected during the early stages of Nelson syndrome. Physical examination including height, weight, vital signs, blood pressure, eye examination, thyroid examination, abdominal examination, neurological examination, skin examination and pubertal staging needs to be assessed. Through blood pressure and pulse readings can indicate hypothyroidism and adrenal insufficiency. Hyper-pigmentation, hyporeflexia, and loss of vision can also indicate Nelson's syndrome when assessed together. Specifically for a child who might have Nelson's syndrome, the patient should be questioned about the symptoms of the disease, and well as symptoms of other diseases to narrow down which disease the patient presents with. The patient should be questioned about how often and to what degree headaches, visual disturbances, and symptoms associated with pituitary malfunction occur. Additionally, adrenal steroid replacement should be assessed, especially in children who have prior insufficiency associated wit
The earliest electrocardiographic (ECG) findings associated with hypokalemia is a decrease in T waves height. Then, ST depression and T inversion happens as serum potassium reduces further. Due to prolonged repolarization of ventricular Purkinje fibers, prominent U wave occurs (usually seen at V2 and V3 leads), frequently superimposed upon the T wave and therefore produces the appearance of a prolonged QT interval when serum potassium reduces to below 3 mEq/L.
Common treatments for Nelson's syndrome include radiation or surgical procedure. Radiation allows for the limitation of the growth of the pituitary gland and the adenomas. If the adenomas start to affect the surrounding structures of the brain, then a micro-surgical technique can be adapted in order to remove the adenomas in a transsphenoidal (bone at base of the skull) process. Death may result with development of a locally aggressive pituitary tumor. However, does not commonly occur with pituitary diseases. In the rare case, ACTH-secreting tumors can become malignant. Morbidity from the disease can occur due to pituitary tissue compression or replacement, and compression of structures that surround the pituitary fossa. The tumor can also compress the optic apparatus, disturb cerebrospinal fluid flow, meningitis, and testicular enlargement in rare cases.
Chylomicron retention disease is a disorder of fat absorption. It is associated with SAR1B. Mutations in SAR1B prevent the release of chylomicrons in the circulation which leads to nutritional and developmental problems. It is a rare autosomal recessive disorder with around 40 cases reported worldwide. Since the disease allele is recessive, parents usually do not show symptoms.
Without functional chylomicrons certain fat-soluble vitamins such as vitamin D and vitamin E cannot be absorbed. Chylomicrons have a crucial role in fat absorption and transport, thus deficiency in chylomicron functioning reduces available levels of dietary fats and fat-soluble vitamins.
Spinal arteriovenous malformations (AVMs, or angiomatous malformations) are congenital (from birth) abnormalities of blood vessels. Arteries that directly communicate with veins bypass the capillary network (which has not yet developed) and thus creates a shunt. AVMs appear as a mass of , dilated vessels. In regards to the spinal cord, they are usually located in the thoracolumbar region (between the thoracic and lumbar regions, 60% of the time), as opposed to the upper thoracic (20%) and cervical regions (approximately 15%). Cervical malformations arise from the anterior spinal artery and lie within the cord, whereas thoracolumbar malformations can be internal, external or encompass both areas of the cord.
Malformations can be recognised as part of an acute illness or gradual onset disease. In diseases such as subarachnoid hemorrhage, signs and symptoms include headache, neck stiffness and back and leg pain. Extradural, subdural and intramedullary hematomas are all signs of acute cord compression. Gradual onset diseases are more common (85-90% of all diseases leading to a diagnosis of malformation) and are usually due to an increased venous pressure. Other factors such as thrombosis or arachnoiditis can be involved. A bruit (unusual blood sounds) may be heard overlying the spinal arteriovenous malformation. Very occasionally, nevus (moles) or angiolipomas are found.
Myelography is used to confirm the diagnosis of AVMs and it shows 'snake-like' vessels on the cord's surface. If the myelogram is positive, angiography is required to show the extent of malformation and the exact site of the shunt. Magnetic resonance imaging (MRI) may show the appropriate area. If AVMs are left untreated, 50% of patients with gradual symptoms will be unable to walk within 3 years of onset. Operations can prevent progression and may improve any gait or incontinence.
In the months following birth, signs and symptoms will appear. Some symptoms will manifest gradually during childhood.
- Failure to gain weight
- Failure to thrive
- Diarrhea
- Foul-smelling feces, steatorrhea
- Impaired nervous system functions
- Decreased reflexes, hyporeflexia
Abnormal heart rhythms can also result, and ECG findings of a short QT interval suggest hypercalcaemia. Significant hypercalcaemia can cause ECG changes mimicking an acute myocardial infarction. Hypercalcaemia has also been known to cause an ECG finding mimicking hypothermia, known as an Osborn wave.
Vascular myelopathy (vascular disease of the spinal cord) refers to an abnormality of the spinal cord in regard to its blood supply. The blood supply is complicated and supplied by two major vessel groups: the posterior spinal arteries and the anterior spinal arteries—of which the Artery of Adamkiewicz is the largest. Both the posterior and anterior spinal arteries run the entire length of the spinal cord and receive anastomotic (conjoined) vessels in many places. The anterior spinal artery has a less efficient supply of blood and is therefore more susceptible to vascular disease. Whilst atherosclerosis of spinal arteries is rare, necrosis (death of tissue) in the anterior artery can be caused by disease in vessels originating from the segmental arteries such as atheroma (arterial wall swelling) or aortic dissection (a tear in the aorta).
The goal of therapy is to treat the hypercalcaemia first and subsequently effort is directed to treat the underlying cause.
A number of various diseases may present with symptoms similar to those caused by a clinical West Nile virus infection. Those causing neuroinvasive disease symptoms include the enterovirus infection and bacterial meningitis. Accounting for differential diagnoses is a crucial step in the definitive diagnosis of WNV infection. Consideration of a differential diagnosis is required when a patient presents with unexplained febrile illness, extreme headache, encephalitis or meningitis. Diagnostic and serologic laboratory testing using polymerase chain reaction (PCR) testing and viral culture of CSF to identify the specific pathogen causing the symptoms, is the only currently available means of differentiating between causes of encephalitis and meningitis.