Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hypoesthesia (or hypesthesia) refer to a reduced sense of touch or sensation, or a partial loss of sensitivity to sensory stimuli. In everyday speech this is sometimes referred to as "numbness".
Hypoesthesia is one of the negative sensory symptoms associated with cutaneous sensory disorder (CSD). In this condition, patients have abnormal disagreeable skin sensations that can be increased (stinging, itching or burning) or decreased (numbness or hypoesthesia). There are no other apparent medical diagnoses to explain these symptoms.
Cutaneous hyperesthesia has been associated with diagnosis of appendicitis in children but this symptom was not supported by the evidence.
Hypoesthesia originating in (and extending centrally from) the feet, fingers, navel, and/or lips is one of the common symptoms of beriberi, which is a set of symptoms caused by thiamine deficiency.
Hypoesthesia is also one of the more common manifestations of decompression sickness (DCS), along with joint pain, rash and generalized fatigue.
Several different types of magnetic resonance imaging (MRI) may be employed in diagnosis: MRI without contrast, Gd contrast enhanced T1-weighted MRI (GdT1W) or T2-weighted enhanced MRI (T2W or T2*W). Non-contrast enhanced MRI is considerably less expensive than any of the contrast enhanced MRI scans. The gold standard in diagnosis is GdT1W MRI.
The reliability of non-contrast enhanced MRI is highly dependent on the sequence of scans, and the experience of the operator.
Before the advent of MRI, electronystagmography and Computed Tomography were employed for diagnosis of acoustic neuroma.
A computed tomography (CT) scan is another examination method often used for the diagnosis of Tarlov cyst. Unenhanced CT scans may show sacral erosion, asymmetric epidural fat distribution, and cystic masses that are have the same density with CSF. CT Myelogram is minimally invasive, and could be employed when MRI cannot be performed on patient.
Two most commonly used and effective examination method for Tarlov Cysts are MRI and CT. Both CT and MRI are good imaging procedures that allow the detection of extradural spinal masses such as Tarlov cysts. Magnetic resonance neurography is an emerging imaging technology based on MRI that highlights neurologic tissue. Often cysts are under reported and under diagnosed as radiologists and neurosurgeons have been traditionally taught to ignore these cysts. Patients frequently experience difficulty in diagnosis, however this is changing as Tarlov cysts have now been recognized by NORD as a rare disease.
Ferner et al. give three sets of diagnostic criteria for NF2:
1. Bilateral vestibular schwannoma (VS) or family history of NF2 plus Unilateral VS or any two of: meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
2. Unilateral VS plus any two of meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
3. Two or more meningioma plus unilateral VS or any two of glioma, schwannoma and cataract.
Another set of diagnostic criteria is the following:
- Detection of bilateral acoustic neuroma by imaging-procedures
- First degree relative with NF II and the occurrence of neurofibroma, meningiomas, glioma, or Schwannoma
- First degree relative with NF II and the occurrence of juvenile posterior subcapsular cataract.
The criteria have varied over time.
Bilateral vestibular schwannomas are diagnostic of NF2.
NF II can be diagnosed with 65% accuracy prenatally with chorionic villus sampling or amniocentesis.