Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Retinyl esters can be distinguished from retinol in serum and other tissues and quantified with the use of methods such as high-performance liquid chromatography.
Elevated amounts of retinyl ester (i.e., > 10% of total circulating vitamin A) in the fasting state have been used as markers for chronic hypervitaminosis A in humans and monkeys. This increased retinyl ester may be due to decreased hepatic uptake of vitamin A and the leaking of esters into the bloodstream from saturated hepatic stellate cells.
Assessing vitamin A status in persons with subtoxicity or toxicity is complicated because serum retinol concentrations are not sensitive indicators in this range of liver vitamin A reserves. The range of serum retinol concentrations under normal conditions is 1–3 μmol/l and, because of homeostatic regulation, that range varies little with widely disparate vitamin A intakes
The U.S Institute of Medicine has established a Tolerable Upper Intake Level (UL) to protect against vitamin D toxicity. These levels in microgram (mcg or µg) and International Units (IU) for male and female are:
- 0–6 months: 25 µg (1000 IU)
- 7–12 months: 38 µg (1500 IU)
- 1–3 years: 63 µg (2500 IU)
- 4–8 years:75 µg (3000 IU)
- 9+ years:100 µg (4000 IU)
- Pregnant and Lactating: 100 µg (4000 IU)
The recommended dietary allowance is 15 µg/d (600 IU per day; 800 IU for those over 70 years). Overdose has been observed at 1,925 µg/d (77,000 IU per day). Acute overdose requires between 15,000 µg/d (600,000 IU per day) and 42,000 µg/d (1,680,000 IU per day) over a period of several days to months.
Based on risk assessment, a safe upper intake level of 250 µg (10,000 IU) per day in healthy adult has been suggested by non-government authors. However, no government has a UL higher than 4,000 IU.
In the United States, overdose exposure to all formulations of "vitamins" was reported by 62,562 individuals in 2004 (nearly 80% [~78%, n=48,989] of these exposures were in children under the age of 6), leading to 53 "major" life-threatening outcomes and 3 deaths (2 from vitamins D and E; 1 from polyvitaminic type formula, with iron and no fluoride). This may be compared to the 19,250 people who died of unintentional poisoning of all kinds in the U.S. in the same year (2004). In 2010, 71,000 exposures to various vitamins and multivitamin-mineral formulations were reported to poison control centers, which resulted in 15 major reactions but no deaths.
Before 1998, several deaths per year were associated with pharmaceutical iron-containing supplements, especially brightly colored, sugar-coated, high-potency iron supplements, and most deaths were children. Unit packaging restrictions on supplements with more than 30 mg of iron have since reduced deaths to 0 or 1 per year. These statistics compare with 59 confirmed deaths due to aspirin poisoning in 2003 and 147 deaths known to be associated with acetaminophen-containing products in 2003.
Global efforts to support national governments in addressing VAD are led by the Global Alliance for Vitamin A (GAVA), which is an informal partnership between A2Z, the Canadian International Development Agency, Helen Keller International, Micronutrient Initiative, UNICEF, USAID, and the World Bank. Joint GAVA activity is coordinated by the Micronutrient Initiative.
Vitamin Angels has committed itself to eradicating childhood blindness due to VAD on the planet by the year 2020. Operation 20/20 was launched in 2007 and will cover 18 countries. The program gives children two high-dose vitamin A and antiparasitic supplements (twice a year for four years), which provides children with enough of the nutrient during their most vulnerable years to prevent them from going blind and suffering from other life-threatening diseases related to VAD.
About 75% the vitamin A required for supplementation activity by developing countries is supplied by the Micronutrient Initiative with support from the Canadian International Development Agency.
An estimated 1.25 million deaths due to VAD have been averted in 40 countries since 1998.
In 2008, an estimated annual investment of US$60 million in vitamin A and zinc supplementation combined would yield benefits of more than US$1 billion per year, with every dollar spent generating benefits of more than US$17. These combined interventions were ranked by the Copenhagen Consensus 2008 as the world’s best development investment.
Treatment of VAD can be undertaken with both oral and injectable forms, generally as vitamin A palmitate.
- As an oral form, the supplementation of vitamin A is effective for lowering the risk of morbidity, especially from severe diarrhea, and reducing mortality from measles and all-cause mortality. Vitamin A supplementation of children under five who are at risk of VAD can reduce all‐cause mortality by 23%. Some countries where VAD is a public-health problem address its elimination by including vitamin A supplements available in capsule form with national immunization days (NIDs) for polio eradication or measles. Additionally, the delivery of vitamin A supplements, during integrated child health events such as child health days, have helped ensure high coverage of vitamin A supplementation in a large number of least developed countries. Child health events enable many countries in West and Central Africa to achieve over 80% coverage of vitamin A supplementation. According to UNICEF data, in 2013 worldwide, 65% of children between the ages of 6 and 59 months were fully protected with two high-dose vitamin A supplements. Vitamin A capsules cost about US$0.02. The capsules are easy to handle; they do not need to be stored in a refrigerator or vaccine carrier. When the correct dosage is given, vitamin A is safe and has no negative effect on seroconversion rates for oral polio or measles vaccines. However, because the benefit of vitamin A supplements is transient, children need them regularly every four to six months. Since NIDs provide only one dose per year, NIDs-linked vitamin A distribution must be complemented by other programs to maintain vitamin A in children Maternal high supplementation benefits both mother and breast-fed infant: high-dose vitamin A supplementation of the lactating mother in the first month postpartum can provide the breast-fed infant with an appropriate amount of vitamin A through breast milk. However, high-dose supplementation of pregnant women should be avoided because it can cause miscarriage and birth defects.
- Food fortification is also useful for improving VAD. A variety of oily and dry forms of the retinol esters, retinyl acetates, and retinyl palmitate are available for food fortification of vitamin A. Margarine and oil are the ideal food vehicles for vitamin A fortification. They protect vitamin A from oxidation during storage and prompt absorption of vitamin A. Beta-carotene and retinyl acetate or retinyl palmitate are used as a form of vitamin A for vitamin A fortification of fat-based foods. Fortification of sugar with retinyl palmitate as a form of vitamin A has been used extensively throughout Central America. Cereal flours, milk powder, and liquid milk are also used as food vehicles for vitamin A fortification. Genetic engineering is another method of food fortification, and this has been achieved with golden rice, but opposition to genetically modified foods has prevented its use as of July 2012.
- Dietary diversification can also control VAD. Nonanimal sources of vitamin A which contain preformed vitamin A account for greater than 80% of intake for most individuals in the developing world. The increase in consumption of vitamin A-rich foods of animal origin in addition to fruits and vegetables has beneficial effects on VAD. Researchers at the U. S. Agricultural Research Service have been able to identify genetic sequences in corn that are associated with higher levels of beta-carotene, the precursor to vitamin A. They found that breeders can cross certain variations of corn to produce a crop with an 18-fold increase in beta-carotene. Such advancements in nutritional plant breeding could one day aid in the illnesses related to VAD in developing countries.
With few exceptions, like some vitamins from B-complex, hypervitaminosis usually occurs more with fat-soluble vitamins (D, E, K and A or 'DEKA'), which are stored in the liver and fatty tissues of the body. These vitamins build up and remain for a longer time in the body than water-soluble vitamins.
Conditions include:
- Hypervitaminosis A
- Hypervitaminosis D
- Hypervitaminosis E
- Hypervitaminosis K, unique as the true upper limit is less clear as is its bioavailability.
According to Williams' Essentials of Diet and Nutrition Therapy it is difficult to set a DRI for vitamin K because part of the requirement can be met by intestinal bacterial synthesis.
- Reliable information is lacking as to the vitamin K content of many foods or its bioavailability. With this in mind the Expert Committee established an AI rather than an RDA.
- This RDA (AI for men age 19 and older is 120 µg/day, AI for women is 90 µg/day) is adequate to preserve blood clotting, but the correct intake needed for optimum bone health is unknown. Toxicity has not been reported.
High-dosage A; high-dosage, slow-release vitamin B; and very high-dosage vitamin B alone (i.e. without vitamin B complex) hypervitaminoses are sometimes associated with side effects that usually rapidly cease with supplement reduction or cessation.
High doses of mineral supplements can also lead to side effects and toxicity. Mineral-supplement poisoning does occur occasionally, most often due to excessive intake of iron-containing supplements.
A vitamin deficiency can cause a disease or syndrome known as an avitaminosis or hypovitaminosis. This usually refers to a long-term deficiency of a vitamin. When caused by inadequate nutrition it can be classed as a "primary deficiency", and when due to an underlying disorder such as malabsorption it can be classed as a "secondary deficiency". An underlying disorder may be metabolic as in a defect converting tryptophan to niacin. It can also be the result of lifestyle choices including smoking and alcohol consumption.
Examples are vitamin A deficiency, folate deficiency, scurvy, vitamin D deficiency, vitamin E deficiency, and vitamin K deficiency. In the medical literature, any of these may also be called by names on the pattern of "hypovitaminosis" or "avitaminosis" + "[letter of vitamin]", for example, hypovitaminosis A, hypovitaminosis C, hypovitaminosis D.
Conversely hypervitaminosis is the syndrome of symptoms caused by over-retention of fat-soluble vitamins in the body.
- Vitamin A deficiency can cause keratomalacia.
- Thiamine (vitamin B1) deficiency causes beriberi and Wernicke–Korsakoff syndrome.
- Riboflavin (vitamin B2) deficiency causes ariboflavinosis.
- Niacin (vitamin B3) deficiency causes pellagra.
- Pantothenic acid (vitamin B5) deficiency causes chronic paresthesia.
- Vitamin B6
- Biotin (vitamin B7) deficiency negatively affects fertility and hair/skin growth. Deficiency can be caused by poor diet or genetic factors (such as mutations in the BTD gene, see multiple carboxylase deficiency).
- Folate (vitamin B9) deficiency is associated with numerous health problems. Fortification of certain foods with folate has drastically reduced the incidence of neural tube defects in countries where such fortification takes place. Deficiency can result from poor diet or genetic factors (such as mutations in the MTHFR gene that lead to compromised folate metabolism).
- Vitamin B12 (cobalamin) deficiency can lead to pernicious anemia, megaloblastic anemia, subacute combined degeneration of spinal cord, and methylmalonic acidemia among other conditions.
- Vitamin C (ascorbic acid) short-term deficiency can lead to weakness, weight loss and general aches and pains. Longer-term depletion may affect the connective tissue. Persistent vitamin C deficiency leads to scurvy.
- Vitamin D (cholecalciferol) deficiency is a known cause of rickets, and has been linked to numerous health problems.
- Vitamin E deficiency causes nerve problems due to poor conduction of electrical impulses along nerves due to changes in nerve membrane structure and function.
- Vitamin K (phylloquinone or menaquinone) deficiency causes impaired coagulation and has also been implicated in osteoporosis
Hypervitaminosis E is a state of vitamin E toxicity. Since vitamin E can act as an anticoagulant and may increase the risk of bleeding problems, many agencies have set a tolerable upper intake levels (UL) for vitamin E at 1,000 mg (1,500 IU) per day. This UL was established due to an increased incidence of hemorrhaging with higher doses of supplemental vitamin E. Doses of vitamin E above the UL can also magnify the antiplatelet effects of certain drugs such as anti-coagulant medications and aspirin, which can cause life-threatening symptoms in ill patients. Hypervitaminosis E may also counteract vitamin K, leading to a vitamin K deficiency.
List of types of malnutrition or list of nutritional disorders include diseases that results from excessive or inadequate intake of food and nutrients. They come in two broad categories: undernutrition and overnutrition.
Vitamin poisoning is the condition of overly high storage levels of vitamins, which can lead to toxic symptoms. The medical names of the different conditions are derived from the vitamin involved: an excess of vitamin A, for example, is called "hypervitaminosis A".
Iron overload disorders are diseases caused by the overaccumulation of iron in the body. Organs commonly affected are the liver, heart and endocrine glands in the mouth.
Cats cannot synthesize vitamin A from plant beta-carotene, and therefore must be supplemented with retinol from meat. A deficiency in vitamin A will result in a poor coat, with hair loss, with scaly and thickened skin. However an excess of vitamin A, called hypervitaminosis A, can result from over feeding cod liver oil, and large amounts of liver. Signs of hypervitaminosis A are overly sensitive skin, and neck pain causing the cat to be unwilling to groom its self, resulting in a poor coat. Supplementing vitamin A with retinol to a deficient cat, and feeding a balanced diet to a cat with hypervitaminosis A will treat the underlying nutritional disorder.
The lifespan of patients with NPC is usually related to the age of onset. Children with antenatal or infantile onset usually succumb in the first few months or years of life, whereas adolescent and adult onset forms of Niemann–Pick type C have a more insidious onset and slower progression, and affected individuals may survive to the seventh decade. Adult cases of NPC are being recognized with increasing frequency. It is suspected that many patients affected by NPC are undiagnosed, owing to lack of awareness of the disease and the absence of readily available screening or diagnostic tests. For the same reasons the diagnosis is often delayed by many years.
Niemann–Pick type C is diagnosed by assaying cultured fibroblasts for cholesterol esterfication and staining for unesterified cholesterol with filipin. The fibroblasts are grown from a small skin biopsy taken from a patient with suspected NPC. The diagnosis can be confirmed by identifying mutations in the NPC1 or NPC2 genes in 80–90% of cases. This specialized testing is available at Thomas Jefferson University Lysosomal Disease Testing Lab and the Mayo Clinic.
The cat must have a supply of niacin, as cats cannot convert tryptophan into niacin like dogs. However, diets high in corn and low in protein can result in skin lesions and scaly, dry, greasy skin, with hair loss. Another B vitamin, biotin, if deficient causes hair loss around the eyes and face. A lack of B vitamins can be corrected by supplementing with a vitamin B complex, and brewers yeast.
Experiments for human toxicology require a long term following and a large amount of investment in order to classify a chemical as co-carcinogens, carcinogens or anti-carcinogenic. In recent years, people substitutes health supplement for healthy meal. Some myths even state beta carotene as elixir in developing country(The Third World).
With rising health consciousness, people rely on food supplements like vitamins A, B, C, D, E etc. these vitamins act as anti-oxidants chemical in the human body. Antioxidants is a good chemical in the appropriate consumption but a large overdose can cause cellular oxidation and cause cytopathic. Also, the industries can not strictly control the concentration and dose for supplement that extracted from natural food resources. A long-term consumption of those supplement can cause physical burden and also a significant hard work for organ to metabolize. Many health organization and government have published a maximum daily consumption for supplement called Tolerable Upper Intake Levels (UL), for example World Health Organization suggest the Tolerable Upper Intake Levels of Vitamin C is 2000 mg/d for adult men from age 31 to 50. Tolerable Upper Intake Levels is different for different gender and age. These suggested intake level can be followed in order to maintain the public health and safety.
Both animal and human experiment research shows that supplement cannot be the substitution to replace the daily food diet. Having a diverse diet and healthy habits is the better way to stay healthy instead of taking a lots of supplement that might be a co-carcinogen.
As there is no known cure, few people with progeria exceed 13 years of age. At least 90% of patients die from complications of atherosclerosis, such as heart attack or stroke.
Mental development is not adversely affected; in fact, intelligence tends to be average to above average. With respect to the features of aging that progeria appears to manifest, the development of symptoms is comparable to aging at a rate eight to ten times faster than normal. With respect to features of aging that progeria does not exhibit, patients show no neurodegeneration or cancer predisposition. They also do not develop conditions that are commonly associated with aging, such as cataracts (caused by UV exposure) and osteoarthritis.
Although there may not be any successful treatments for progeria itself, there are treatments for the problems it causes, such as arthritic, respiratory, and cardiovascular problems. Sufferers of progeria have normal reproductive development and there are known cases of women with progeria who had delivered healthy offspring.
Diagnosis is suspected according to signs and symptoms, such as skin changes, abnormal growth, and loss of hair. A genetic test for LMNA mutations can confirm the diagnosis of progeria.
There is no diagnostic test for calciphylaxis. The diagnosis is a clinical one. The characteristic lesions are the ischemic skin lesions (usually with areas of skin necrosis). The necrotic skin lesions (i.e. the dying or already dead skin areas) typically appear as violaceous (dark bluish purple) lesions and/or completely black leathery lesions. They can be extensive. The suspected diagnosis can be supported by a skin biopsy. It shows arterial calcification and occlusion in the absence of vasculitis. Sometimes the bone scintigraphy can show increased tracer accumulation in the soft tissues. In certain patients, anti-nuclear antibody may play a role.
A study found that, "Increasing but moderate alcohol consumption in women was determined to be associated with an increased risk of cancers of the oral cavity and pharynx, esophagus, larynx, rectum, breast, and liver…".
Alcohol consumption at any quantity is a risk factor for cancers of the mouth, esophagus, pharynx and larynx. The U.S. National Cancer Institute states "Drinking alcohol increases the risk of cancers of the mouth, esophagus, pharynx, larynx, and liver in men and women, … In general, risks increases above baseline with any alcohol intake (mild; <2 glass of wine per week) and increases significantly with moderate alcohol intake (one glass of wine per day) with highest risk in those with greater than 7 glasses of wine per week. (A drink is defined as 12 ounces of regular beer, 5 ounces of wine, or 1.5 ounces of 80-proof liquor.) … Also, using alcohol with tobacco is riskier than using either one alone, because it further increases the chances of getting cancers of the mouth, throat, and esophagus." The federal government’s Dietary Guidelines for Americans 2010 defines moderate alcohol drinking as up to one drink per day for women and up to two drinks per day for men. Heavy alcohol drinking is defined as having more than three drinks on any day or more than seven drinks per week for women and more than four drinks on any day or more than 14 drinks per week for men.
The International Head and Neck Cancer Epidemiology (INHANCE) Consortium co-ordinated a meta-study on the issue. A study looking at laryngeal cancer and beverage type concluded, "This study thus indicates that in the Italian population characterized by frequent wine consumption, wine is the beverage most strongly related to the risk of laryngeal cancer."
A review of the epidemiological literature published from 1966 to 2006 concluded that:
- The risk of esophageal cancer nearly doubled in the first two years following alcohol cessation, a sharp increase that may be due to the fact that some people only stop drinking when they are already experiencing disease symptoms. However, risk then decreased rapidly and significantly after longer periods of abstention.
- Risk of head and neck cancer only reduced significantly after 10 years of cessation.
- After more than 20 years of alcohol cessation, the risks for both cancers were similar to those seen in people who never drank alcohol.
A study concluded that for every additional drink regularly consumed per day, the incidence of oral cavity and pharynx cancers increases by 1 per 1000. The incidence of cancers of the esophagus and larynx increase by 0.7 per 1000.
A 2008 study suggests that acetaldehyde (a breakdown product of alcohol) is implicated in oral cancer.
Co-carcinogens can be a lifestyle like cigarette-smoking, alcohol-drinking or even areca nut tobacco-chewing, which is an Asian tradition, because those activities promote the cytopathic effect (CPE). Also, some virus are co-carcinogens like Herpesviruses, Epstein–Barr virus (EBV) and human herpesvirus 4 (HHV-4) Epstein–Barr virus destroy immune system for human body and then increase the risk of cancer such as Hodgkin’s lymphoma and human immunodeficiency virus because they cause a long term-chronic inflammation for lymphocytes and epithelial cells. Moreover, Over intake beta carotene for a long period of time increased the risk of lung cancer, prostate cancer and many other kind of malignant tumor for cigarette smoker and worker having high contact with asbestos. Generally, co-carcinogen can be irregular eating habits and disease virus and co-carcinogen not only help cancer cell make malignant tumor but also increase the risk of cardiovascular disease and mortality rate.
There is no cure, although curative therapy with bone marrow transplantion is being investigated in clinical trials. It is believed the healthy marrow will provide the sufferer with cells from which osteoclasts will develop. If complications occur in children, patients can be treated with vitamin D. Gamma interferon has also been shown to be effective, and it can be associated to vitamin D. Erythropoetin has been used to treat any associated anemia. Corticosteroids may alleviate both the anemia and stimulate bone resorption. Fractures and osteomyelitis can be treated as usual. Treatment for osteopetrosis depends on the specific symptoms present and the severity in each person. Therefore, treatment options must be evaluated on an individual basis. Nutritional support is important to improve growth and it also enhances responsiveness to other treatment options. A calcium-deficient diet has been beneficial for some affected people.
Treatment is necessary for the infantile form:
- Vitamin D (calcitriol) appears to stimulate dormant osteoclasts, which stimulates bone resorption
- Gamma interferon can have long-term benefits. It improves white blood cell function (leading to fewer infections), decreases bone volume, and increases bone marrow volume.
- Erythropoietin can be used for anemia, and corticosteroids can be used for anemia and to stimulate bone resorption.
Bone marrow transplantation (BMT) improves some cases of severe, infantile osteopetrosis associated with bone marrow failure, and offers the best chance of longer-term survival for individuals with this type.
In pediatric (childhood) osteopetrosis, surgery is sometimes needed because of fractures. Adult osteopetrosis typically does not require treatment, but complications of the condition may require intervention. Surgery may be needed for aesthetic or functional reasons (such as multiple fractures, deformity, and loss of function), or for severe degenerative joint disease.
The long-term-outlook for people with osteopetrosis depends on the subtype and the severity of the condition in each person.The severe infantile forms of osteopetrosis are associated with shortened life expectancy, with most untreated children not surviving past their first decade. seems to have cured some infants with early-onset disease. However, the long-term prognosis after transplantation is unknown. For those with onset in childhood or adolescence, the effect of the condition depends on the specific symptoms (including how fragile the bones are and how much pain is present). Life expectancy in the adult-onset forms is normal.
The medication(s) listed below have been approved by the Food and Drug Administration (FDA) as orphan products for treatment of this condition. Learn more orphan products.