Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Although elevated whole blood viscosity is a better measure of hyperviscosity and more common and clinically important, serum viscosity and plasma viscosity are more frequently measured. Normal plasma viscosity is between 1.4 and 1.8 centipoise while symptoms from hyperviscosity typically occur greater than 4 centipoise (about 4 times more viscous than water) and require emergency treatment.
Patients will also have evidence of their underlying disorder. Those with myeloma will typically display a rouleaux formation on a peripheral smear and a large globulin gap, indicative of a significant paraprotein load. While viscosity can be directly measured, results can take a few days to return and thus a high index of suspicion is required to make the diagnosis in a timely manner. If hyperviscosity is suspected, treatment may need to be started prior to obtaining the official viscosity level.
Plasmapheresis may be used to decrease viscosity in the case of myeloma, whereas leukapheresis or phlebotomy may be employed in a leukemic or polycythemic crisis, respectively. Blood transfusions should be used with caution as they can increase serum viscosity. Hydration is a temporizing measure to employ while preparing pheresis. Even after treatment, the condition will recur unless the underlying disorder is treated.
SCLS is often difficult to recognize and diagnose on initial presentation, and thus misdiagnoses are frequent. The characteristic triad of profound arterial hypotension, hemoconcentration (elevated hematocrit, leukocytosis, and thrombocytosis), and hypoalbuminemia in the absence of secondary causes of shock and infection, requires diagnosis in a monitored, hospital setting during or after an acute episode. The fact that the condition is exceedingly rare – an estimated one per million inhabitants – and that several other diseases exhibit features akin to SCLS, including secondary capillary-leak syndrome or hypoproteinemia, militate against early identification. Preserved consciousness, despite severe shock and hypotension, is an additional and most intriguing clinical manifestation often reported during episodes at hospital admission.
The natural history of SCLS episodes indicates they resolve spontaneously within 2-to-4 days, and that they consist of two distinct phases:
All patients with symptomatic cryoglobulinemia are advised to avoid, or protect their extremities, from exposure to cold temperatures. Refrigerators, freezers, and air-conditioning represent dangers of such exposure.
Cryoglobulinemia and cryoglobulinemic disease must be distinguished from cryofibrinogenemia or cryofibrinogenemic disease, conditions which involve the cold-induced intravascular deposition of circulating native fibrinogens. The cryoglobulins in plasma or serum precipitate at lower temperatures (e.g. 4°C). Since cryofibrinogens are present in plasma but greatly depleted in serum, precipitation tests for them are positive in plasma but negative in serum. Cryofibrinogenemia is occasionally found in cases of cryoglobulinemic disease. Cryoglobulinemic disease must also be distinguished from frostbite as well as numerous other conditions that have a clinical (particularly cutaneous) presentation similar to cryoglobulinemic disease but are not exacerbated by cold temperature, e.g. dysfibrinogenemia and dysfibrinogenemic disease (conditions involving the intravascular deposition of genetically abnormal circulating fibrinogens), purpura fulminans, cholesterol emboli, warfarin necrosis, ecthyma gangrenosum, and various hypercoagulable states.
Rheumatoid factor is a sensitive test for cryoglobulinemia. The precipitated cryoglobulins are examined by immunoelectrophoresis and immunofixation to detect and quantify the presence of monoclonal IgG, IgM, IgA, κ light chain, or λ light chain immunoglobins. Other routine tests include measuring blood levels of rheumatoid factor activity, complement C4, other complement components, and hepatitic C antigen. Biopsies of skin lesions and, where indicated, kidney or other tissues can help in determining the nature of the vascular disease (immunoglobulin deposition, cryoglobulinemic vasculitis, or, in cases showing the presence of cryfibrinogenemia, fibrinogen deposition. In all events, further studies to determine the presence of hematological, infections, and autoimmune disorders are conducted on the basis of these findings as well as each cases clinical findings.
It is not clear if screening for disease is useful as it has not been properly studied.
Upon suspicion of PAD, the first-line study is the ankle–brachial index (ABI). When the blood pressure readings in the ankles is lower than that in the arms, blockages in the arteries which provide blood from the heart to the ankle are suspected. Normal ABI range of 1.00 to 1.40.The patient is diagnosed with PAD when the ABI is ≤ 0.90 . ABI values of 0.91 to 0.99 are considered "borderline" and values >1.40 indicate noncompressible arteries. PAD is graded as mild to moderate if the ABI is between 0.41 and 0.90, and an ABI less than 0.40 is suggestive of severe PAD. These relative categories have prognostic value.
In people with suspected PAD but normal resting ABIs, exercise testing of ABI can be done. A base line ABI is obtained prior to exercise. The patient is then asked to exercise (usually patients are made to walk on a treadmill at a constant speed) until claudication pain occurs (or a maximum of 5 minutes), following which the ankle pressure is again measured. A decrease in ABI of 15%-20% would be diagnostic of PAD.
It is possible for conditions which stiffen the vessel walls (such as calcifications that occur in the setting of long term diabetes) to produce false negatives usually, but not always, indicated by abnormally high ABIs (> 1.40). Such results and suspicions merit further investigation and higher level studies.
If ABIs are abnormal the next step is generally a lower limb doppler ultrasound examination to look at site and extent of atherosclerosis. Other imaging can be performed by angiography, where a catheter is inserted into the common femoral artery and selectively guided to the artery in question. While injecting a radiodense contrast agent an X-ray is taken. Any flow limiting stenoses found in the x-ray can be identified and treated by atherectomy, angioplasty or stenting. Contrast angiography is the most readily available and widely used imaging technique.
Modern multislice computerized tomography (CT) scanners provide direct imaging of the arterial system as an alternative to angiography.
Magnetic resonance angiography (MRA) is a noninvasive diagnostic procedure that uses a combination of a large magnet, radio frequencies, and a computer to produce detailed images to provide pictures of blood vessels inside the body. The advantages of MRA include its safety and ability to provide high-resolution three-dimensional (3D) imaging of the entire abdomen, pelvis and lower extremities in one sitting.
Relative polycythemia is an apparent rise of the erythrocyte level in the blood; however, the underlying cause is reduced blood plasma (hypovolemia, cf. dehydration). Relative polycythemia is often caused by loss of body fluids, such as through burns, dehydration, and stress. A specific type of relative polycythemia is Gaisböck syndrome. In this syndrome, primarily occurring in obese men, hypertension causes a reduction in plasma volume, resulting in (amongst other changes) a relative increase in red blood cell count.
The overproduction of red blood cells may be due to a primary process in the bone marrow (a so-called myeloproliferative syndrome), or it may be a reaction to chronically low oxygen levels or, rarely, a malignancy. Alternatively, additional red blood cells may have been received through another process—for example, being over-transfused (either accidentally or, as blood doping, deliberately) or being the recipient twin in a pregnancy, undergoing twin-to-twin transfusion syndrome.
Blood tests show a high concentration of specific gamma-globulins (monoclonal gammopathy) of the IgM type. It almost always has light chains of the κ-type. A variant in which IgG is raised has been described, which appears to be ten times as rare. The immunoglobulins may show up in the urine as Bence Jones proteins. Signs of inflammation are often present: these include an increased white blood cell count (leukocytosis) and a raised erythrocyte sedimentation rate and C-reactive protein. There can be anemia of chronic disease. Bone abnormalities can be seen on radiological imaging (often increased density or osteosclerosis) or biopsy.
Because it is such a rare condition (as of September 2014, only 281 cases have been reported), it is important to rule out other conditions which can cause periodic fevers, paraproteins or chronic hives. These include (and are not limited to) autoimmune or autoinflammatory disorders such as adult-onset Still's disease, angioedema, hematological disorders such as lymphoma or monoclonal gammopathy of undetermined significance, other causes of hives, cryoglobulinemia, mastocytosis, chronic neonatal onset multisystem inflammatory disease or Muckle–Wells syndrome.
It is however possible to have more than one rare condition as seen by a patient with Schnitzler's syndrome and cold induced urticaria.
A meeting of experts, including Dr Liliane Schnitzler (then retired) took place in Strasbourg in May 2012 and drew up diagnostic criteria known as the "Strasbourg Criteria". These included two obligate criteria (chronic urticarial rash and monoclonal IgM or IgG) and several minor criteria; a definite diagnosis requires the two obligate criteria and two minor criteria if IgM, three if IgG; a probable diagnosis requires the two obligate criteria and one (IgM) or two (IgG) minor criteria.
The life span in patients with Schnitzler syndrome has not been shown to differ much from the general population. Careful follow-up is advised, however. A significant proportion of patients develops a lymphoproliferative disorder as a complication, most commonly Waldenström's macroglobulinemia. This may lead to symptoms of hyperviscosity syndrome. AA amyloidosis has also been reported in people with Schnitzler syndrome.
Cranial imaging is not used for diagnosis of this condition. However, if MRI is performed, it may show cortical restricted diffusion with unusual characteristics of reversible T2 hypointensity in the subcortical white matter.
Retinopathy is diagnosed by an ophthalmologist or an optometrist during eye examination. Stereoscopic fundus photography is the gold standard for the diagnosis of retinopathy. Dilated fundoscopy, or direct visualization of the fundus, has been shown to be effective as well.
A diagnosis of Waldenström's macroglobulinemia depends on a significant monoclonal IgM spike evident in blood tests and malignant cells consistent with the disease in bone marrow biopsy samples. Blood tests show the level of IgM in the blood and the presence of proteins, or tumor markers, that are the key symptoms of WM. A bone marrow biopsy provides a sample of bone marrow, usually from the back of the pelvis bone. The sample is extracted through a needle and examined under a microscope. A pathologist identifies the particular lymphocytes that indicate WM. Flow cytometry may be used to examine markers on the cell surface or inside the lymphocytes.
Additional tests such as computed tomography (CT or CAT) scan may be used to evaluate the chest, abdomen, and pelvis, particularly swelling of the lymph nodes, liver, and spleen. A skeletal survey can help distinguish between WM and multiple myeloma. Anemia is typically found in 80% of patients with WM. A low white blood cell count, and low platelet count in the blood may be observed. A low level of neutrophils (a specific type of white blood cell) may also be found in some individuals with WM.
Chemistry tests include lactate dehydrogenase (LDH) levels, uric acid levels, erythrocyte sedimentation rate (ESR), kidney and liver function, total protein levels, and an albumin-to-globulin ratio. The ESR and uric acid level may be elevated. Creatinine is occasionally elevated and electrolytes are occasionally abnormal. A high blood calcium level is noted in approximately 4% of patients. The LDH level is frequently elevated, indicating the extent of Waldenström's macroglobulinemia–related tissue involvement. Rheumatoid factor, cryoglobulins, direct antiglobulin test and cold agglutinin titre results can be positive. Beta-2 microglobulin and C-reactive protein test results are not specific for Waldenström's macroglobulinemia. Beta-2 microglobulin is elevated in proportion to tumor mass. Coagulation abnormalities may be present. Prothrombin time, activated partial thromboplastin time, thrombin time, and fibrinogen tests should be performed. Platelet aggregation studies are optional. Serum protein electrophoresis results indicate evidence of a monoclonal spike but cannot establish the spike as IgM. An M component with beta-to-gamma mobility is highly suggestive of Waldenström's macroglobulinemia. Immunoelectrophoresis and immunofixation studies help identify the type of immunoglobulin, the clonality of the light chain, and the monoclonality and quantitation of the paraprotein. High-resolution electrophoresis and serum and urine immunofixation are recommended to help identify and characterize the monoclonal IgM paraprotein.
The light chain of the monoclonal protein is usually the kappa light chain. At times, patients with Waldenström's macroglobulinemia may exhibit more than one M protein. Plasma viscosity must be measured. Results from characterization studies of urinary immunoglobulins indicate that light chains (Bence Jones protein), usually of the kappa type, are found in the urine. Urine collections should be concentrated.
Bence Jones proteinuria is observed in approximately 40% of patients and exceeds 1 g/d in approximately 3% of patients. Patients with findings of peripheral neuropathy should have nerve conduction studies and antimyelin associated glycoprotein serology.
Criteria for diagnosis of Waldenström's macroglobulinemia include:
1. IgM monoclonal gammopathy that excludes chronic lymphocytic leukemia and Mantle cell lymphoma
2. Evidence of anemia, constitutional symptoms, hyperviscosity, swollen lymph nodes, or enlargement of the liver and spleen that can be attributed to an underlying lymphoproliferative disorder.
Despite the temporary nature of the vision loss, those experiencing amaurosis fugax are usually advised to consult a physician immediately as it is a symptom that may herald serious vascular events, including stroke. Restated, “because of the brief interval between the transient event and a stroke or blindness from temporal arteritis, the workup for transient monocular blindness should be undertaken without delay.” If the patient has no history of giant cell arteritis, the probability of vision preservation is high; however, the chance of a stroke reaches that for a hemispheric TIA. Therefore, investigation of cardiac disease is justified.
A diagnostic evaluation should begin with the patient's history, followed by a physical exam, with particular importance being paid to the ophthalmic examination with regards to signs of ocular ischemia. When investigating amaurosis fugax, an ophthalmologic consult is absolutely warranted if available. Several concomitant laboratory tests should also be ordered to investigate some of the more common, systemic causes listed above, including a complete blood count, erythrocyte sedimentation rate, lipid panel, and blood glucose level. If a particular cause is suspected based on the history and physical, additional relevant labs should be ordered.
If laboratory tests are abnormal, a systemic disease process is likely, and, if the ophthalmologic examination is abnormal, ocular disease is likely. However, in the event that both of these routes of investigation yield normal findings or an inadequate explanation, noninvasive duplex ultrasound studies are recommended to identify carotid artery disease. Most episodes of amaurosis fugax are the result of stenosis of the ipsilateral carotid artery. With that being the case, researchers investigated how best to evaluate these episodes of vision loss, and concluded that for patients ranging from 36–74 years old, "...carotid artery duplex scanning should be performed...as this investigation is more likely to provide useful information than an extensive cardiac screening (ECG, Holter 24-hour monitoring, and precordial echocardiography)." Additionally, concomitant head CT or MRI imaging is also recommended to investigate the presence of a “clinically silent cerebral embolism.”
If the results of the ultrasound and intracranial imaging are normal, “renewed diagnostic efforts may be made,” during which fluorescein angiography is an appropriate consideration. However, carotid angiography is not advisable in the presence of a normal ultrasound and CT.
Treatment of HHS begins with reestablishing tissue perfusion using intravenous fluids. People with HHS can be dehydrated by 8 to 12 liters. Attempts to correct this usually take place over 24 hours with initial rates of normal saline often in the range of 1 L/h for the first few hours or until the condition stabilizes.
In the absence of symptoms, many clinicians will recommend simply monitoring the patient; Waldenström himself stated "let well do" for such patients. These asymptomatic cases are now classified as two successively more pre-malignant phases, IgM monoclonal gammopathy of undetermined significance (i.e. IgM MGUS) and smoldering Waldenström's macroglobulinemia.
But on occasion, the disease can be fatal, as it was to the French president Georges Pompidou, who died in office in 1974. Mohammad Reza Shah Pahlavi, the Shah of Iran, also suffered from Waldenström's macroglobulinemia, which resulted in his ill-fated trip to the United States for therapy in 1979, leading to the Iran hostage crisis.
Telemedicine programs are available that allow primary care clinics to take images using specially designed retinal imaging equipment which can then be shared electronically with specialists at other locations for review. In 2009, Community Health Center, Inc. implemented a telemedicine retinal screening program for low-income patients with diabetes as part of those patients annual visits at the Federally Qualified Health Center.
Amaurosis fugax (Latin "" meaning "fleeting", Greek "" meaning "darkening", "dark", or "obscure") is a painless temporary loss of vision in one or both eyes.
Macroglobulinemia is the presence of increased levels of macroglobulins in the circulating blood.
It is a plasma cell dyscrasia, resembling leukemia, with cells of lymphocytic, plasmacytic, or intermediate morphology, which secrete a monoclonal immunoglobulin M component. There is diffuse infiltration by the malignant cells of the bone marrow and also, in many cases, of the spleen, liver, or lymph nodes. The circulating macroglobulin can produce symptoms of hyperviscosity syndrome: weakness, fatigue, bleeding disorders, and visual disturbances. Peak incidence of macroglobulinemia is in the sixth and seventh decades of life. (Dorland, 28th ed)
In the United States, sarcoidosis has a prevalence of approximately 10 cases per 100,000 whites and 36 cases per 100,000 blacks. Heerfordt syndrome is present in 4.1–5.6% of those with sarcoidosis.
Various strategies have been proposed to prevent the development of metabolic syndrome. These include increased physical activity (such as walking 30 minutes every day), and a healthy, reduced calorie diet. Many studies support the value of a healthy lifestyle as above. However, one study stated these potentially beneficial measures are effective in only a minority of people, primarily due to a lack of compliance with lifestyle and diet changes. The International Obesity Taskforce states that interventions on a sociopolitical level are required to reduce development of the metabolic syndrome in populations.
The Caerphilly Heart Disease Study followed 2,375 male subjects over 20 years and suggested the daily intake of a pint (~568 ml) of milk or equivalent dairy products more than halved the risk of metabolic syndrome. Some subsequent studies support the authors' findings, while others dispute them. A systematic review of four randomized controlled trials found that a paleolithic nutritional pattern improved three of five measurable components of the metabolic syndrome in participants with at least one of the components.
The World Health Organization 1999 criteria require the presence of any one of diabetes mellitus, impaired glucose tolerance, impaired fasting glucose or insulin resistance, AND two of the following:
- Blood pressure: ≥ 140/90 mmHg
- Dyslipidemia: triglycerides (TG): ≥ 1.695 mmol/L and high-density lipoprotein cholesterol (HDL-C) ≤ 0.9 mmol/L (male), ≤ 1.0 mmol/L (female)
- Central obesity: waist:hip ratio > 0.90 (male); > 0.85 (female), or body mass index > 30 kg/m
- Microalbuminuria: urinary albumin excretion ratio ≥ 20 µg/min or albumin:creatinine ratio ≥ 30 mg/g
Diagnosis of Harlequin syndrome is made when the individual has consistent signs and symptoms of the condition, therefore, it is made by clinical observation. In addition, a neurologist or primary care physician may require an MRI test to rule out similar disorders such as Horner's syndrome, Adie's syndrome, and Ross' syndrome. In an MRI, a radiologist may observe areas near brain or spinal cord for lesions, or any damage to the nerve endings. It is also important that the clinician rules out traumatic causes by performing autonomic function tests. Such tests includes the following: tilt table test, orthostatic blood pressure measurement, head-up test, valsalva maneuver, thermoregulatory sweat test, tendon reflex test, and electrocardiography (ECG). CT scan of the heart and lungs may also be performed to rule out a structural underlying lesion. The medical history of the individual should be carefully noted.