Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When ambient temperature is excessive, humans and many animals cool themselves below ambient by evaporative cooling of sweat (or other aqueous liquid; saliva in dogs, for example); this helps prevent potentially fatal hyperthermia. The effectiveness of evaporative cooling depends upon humidity. Wet-bulb temperature, which takes humidity into account, or more complex calculated quantities such as wet-bulb globe temperature (WBGT), which also takes solar radiation into account, give useful indications of the degree of heat stress and are used by several agencies as the basis for heat-stress prevention guidelines. (Wet-bulb temperature is essentially the lowest skin temperature attainable by evaporative cooling at a given ambient temperature and humidity.)
A sustained wet-bulb temperature exceeding 35 °C is likely to be fatal even to fit and healthy people unclothed in the shade next to a fan; at this temperature, environmental heat gain instead of loss occurs. , wet-bulb temperatures only very rarely exceeded 30 °C anywhere, although significant global warming may change this.
In cases of heat stress caused by physical exertion, hot environments, or protective equipment, prevention or mitigation by frequent rest breaks, careful hydration, and monitoring body temperature should be attempted. However, in situations demanding one is exposed to a hot environment for a prolonged period or must wear protective equipment, a personal cooling system is required as a matter of health and safety. There is a variety of active or passive personal cooling systems; these can be categorized by their power sources and whether they are person- or vehicle-mounted.
Because of the broad variety of operating conditions, these devices must meet specific requirements concerning their rate and duration of cooling, their power source, and their adherence to health and safety regulations. Among other criteria are the user's need for physical mobility and autonomy. For example, active-liquid systems operate by chilling water and circulating it through a garment; the skin surface area is thereby cooled through conduction. This type of system has proven successful in certain military, law enforcement, and industrial applications. Bomb-disposal technicians wearing special suits to protect against improvised explosive devices (IEDs) use a small, ice-based chiller unit that is strapped to one leg; a liquid-circulating garment, usually a vest, is worn over the torso to maintain a safe core body temperature. By contrast, soldiers traveling in combat vehicles can face microclimate temperatures in excess of 65 °C and require a multiple-user, vehicle-powered cooling system with rapid connection capabilities. Requirements for hazmat teams, the medical community, and workers in heavy industry vary further.
Hyperthermia is generally diagnosed by the combination of unexpectedly high body temperature and a history that supports hyperthermia instead of a fever. Most commonly this means that the elevated temperature has occurred in a hot, humid environment (heat stroke) or in someone taking a drug for which hyperthermia is a known side effect (drug-induced hyperthermia). The presence of signs and symptoms related to hyperthermia syndromes, such as extrapyramidal symptoms characteristic of neuroleptic malignant syndrome, and the absence of signs and symptoms more commonly related to infection-related fevers, are also considered in making the diagnosis.
If fever-reducing drugs lower the body temperature, even if the temperature does not return entirely to normal, then hyperthermia is excluded.
The main candidates for testing are those with a close relative who has suffered an episode of MH or have been shown to be susceptible. The standard procedure is the "caffeine-halothane contracture test", CHCT. A muscle biopsy is carried out at an approved research center, under local anesthesia. The fresh biopsy is bathed in solutions containing caffeine or halothane and observed for contraction; under good conditions, the sensitivity is 97% and the specificity 78%. Negative biopsies are "not" definitive, so any patient who is suspected of MH by their medical history or that of blood relatives is generally treated with non-triggering anesthetics, even if the biopsy was negative. Some researchers advocate the use of the "calcium-induced calcium release" test in addition to the CHCT to make the test more specific.
Less invasive diagnostic techniques have been proposed. Intramuscular injection of halothane 6 vol% has been shown to result in higher than normal increases in local among patients with known malignant hyperthermia susceptibility. The sensitivity was 100% and specificity was 75%. For patients at similar risk to those in this study, this leads to a positive predictive value of 80% and negative predictive value of 100%. This method may provide a suitable alternative to more invasive techniques.
A 2002 study examined another possible metabolic test. In this test, intramuscular injection of caffeine was followed by local measurement of the ; those with known MH susceptibility had a significantly higher (63 versus 44 mmHg). The authors propose larger studies to assess the test's suitability for determining MH risk.
Genetic testing is being performed in a limited fashion to determine susceptibility to MH. In people with a family history of MH, analysis for "RYR1" mutations may be useful.
Accurate determination of core temperature often requires a special low temperature thermometer, as most clinical thermometers do not measure accurately below . A low temperature thermometer can be placed in the rectum, esophagus or bladder. Esophageal measurements are the most accurate and are recommended once a person is intubated. Other methods of measurement such as in the mouth, under the arm, or using an infrared ear thermometer are often not accurate.
As a hypothermic person's heart rate may be very slow, prolonged feeling for a pulse could be required before detecting. In 2005, the American Heart Association recommended at least 30–45 seconds to verify the absence of a pulse before initiating CPR. Others recommend a 60-second check.
The classical ECG finding of hypothermia is the Osborn J wave. Also, ventricular fibrillation frequently occurs below and asystole below . The Osborn J may look very similar to those of an acute ST elevation myocardial infarction. Thrombolysis as a reaction to the presence of Osborn J waves is not indicated, as it would only worsen the underlying coagulopathy caused by hypothermia.
Appropriate clothing helps to prevent hypothermia. Synthetic and wool fabrics are superior to cotton as they provide better insulation when wet and dry. Some synthetic fabrics, such as polypropylene and polyester, are used in clothing designed to wick perspiration away from the body, such as liner socks and moisture-wicking undergarments. Clothing should be loose fitting, as tight clothing reduces the circulation of warm blood. In planning outdoor activity, prepare appropriately for possible cold weather. Those who drink alcohol before or during outdoor activity should ensure at least one sober person is present responsible for safety.
Covering the head is effective, but no more effective than covering any other part of the body. While common folklore says that people lose most of their heat through their heads, heat loss from the head is no more significant than that from other uncovered parts of the body. However, heat loss from the head is significant in infants, whose head is larger relative to the rest of the body than in adults. Several studies have shown that for uncovered infants, lined hats significantly reduce heat loss and thermal stress. Children have a larger surface area per unit mass, and other things being equal should have one more layer of clothing than adults in similar conditions, and the time they spend in cold environments should be limited. However children are often more active than adults, and may generate more heat. In both adults and children, overexertion causes sweating and thus increases heat loss.
Building a shelter can aid survival where there is danger of death from exposure. Shelters can be of many different types, metal can conduct heat away from the occupants and is sometimes best avoided. The shelter should not be too big so body warmth stays near the occupants. Good ventilation is essential especially if a fire will be lit in the shelter. Fires should be put out before the occupants sleep to prevent carbon monoxide poisoning. People caught in very cold, snowy conditions can build an igloo or snow cave to shelter.
The United States Coast Guard promotes using life vests to protect against hypothermia through the 50/50/50 rule: If someone is in water for 50 minutes, he/she has a 50 percent better chance of survival if wearing a life jacket. A heat escape lessening position can be used to increase survival in cold water.
Babies should sleep at 16-20 °C (61-68 °F) and housebound people should be checked regularly to make sure the temperature of the home is at least 18 °C (64 °F).
Removing the pig from the stressful situation can prevent the episode.
Sedation and glucocorticoids may be beneficial.
Under anaesthesia, dantrolene sodium is a very effective treatment.
Genetic testing enables animals to be removed from the herd if they are positive for the gene. This means that the disorder is rare in the developed world these days.
Stress at slaughter should be minimised in all cases.
Diagnosis of coma is simple, but diagnosing the cause of the underlying disease process is often challenging. The first priority in treatment of a comatose patient is stabilization following the basic ABCs (standing for airway, breathing, and circulation). Once a person in a coma is stable, investigations are performed to assess the underlying cause. Investigative methods are divided into physical examination findings and imaging (such as CAT scan, MRI, etc.) and special studies (EEG, etc.)
Truckloads or railcar loads of PSS-susceptible pigs may be found with a higher-than-average percentage dead on arrival after stressful events such as transport.
Initial signs of the onset of PSS are pyrexia, panting, sweating, tachycardia and arrhythmias. Chronic cases may show muscle atrophy.
Under halothane anaesthesia, pigs will suddenly become rigid and pyrexic.
The halothane challenge was the historical method of diagnosis.
Genetic testing via a PCR enables affected and carrier animals to be found.
Psychologist Melanie Joy has likened PSS to post-traumatic stress disorder in humans.
When an unconscious patient enters a hospital, the hospital utilizes a series of diagnostic steps to identify the cause of unconsciousness. According to Young, the following steps should be taken when dealing with a patient possibly in a coma:
1. Perform a general examination and medical history check
2. Make sure the patient is in an actual comatose state and or is not in locked-in state (patient is either able to voluntarily move their eyes or blink) or psychogenic unresponsiveness (caloric stimulation of the vestibular apparatus results in slow deviation of eyes towards the stimulation followed by rapid correction to mid-line. This response cannot be voluntarily suppressed, so if the patient does not have this response, psychogenic coma can be ruled out.)
3. Find the site of the brain that may be causing coma (i.e., brain stem, back of brain…) and assess the severity of the coma with the Glasgow coma scale
4. Take blood work to see if drugs were involved or if it was a result of hypoventilation/hyperventilation
5. Check for levels of “serum glucose, calcium, sodium, potassium, magnesium, phosphate, urea, and creatinine”
6. Perform brain scans to observe any abnormal brain functioning using either CT or MRI scans
7. Continue to monitor brain waves and identify seizures of patient using EEGs
International Organization for Standardization helps set standards for monitoring environments, analyzing data, and interpreting results.
Patients who develop PSH after traumatic injury have longer hospitalization and longer durations in intensive care in cases where ICU treatment is necessary. Patients often are more vulnerable to infections and spend longer times on ventilators, which can lead to an increased risk of various lung diseases. PSH does not affect mortality rate, but it increases the amount of time it takes a patient to recover from injury, compared to patients with similar injuries who do not develop PSH episodes. It often takes patients who develop PSH longer to reach similar levels of the brain activity seen in patients who do not develop PSH, although PSH patients do eventually reach these same levels.
Diagnosing PSH can be very difficult due to the lack of common terminology in circulation and a lack of diagnostic criteria. Different systems for diagnosis have been proposed, but a universal system has not been embraced. One example of a proposed system of diagnosis requires observation confirmation for four of the six following symptoms: fever greater than 38.3 degrees Celsius, tachycardia classified as a heart rate of 120 bpm or higher, hypertension classified as a systolic pressure higher than 160 mmHg or a pulse pressure higher than 80 mmHg, tachypnea classified as respiration rate higher than 30 breaths per minute, excess sweating, and severe dystonia. Ruling out other diseases or syndromes that show similar symptoms is imperative to diagnosis as well. Sepsis, encephalitis, neuroleptic malignant syndrome,
malignant hyperthermia, lethal catatonia, spinal cord injury (not associated with PSH), seizures, and hydrocephalus (this can be associated with PSH) are examples of diagnoses that should be considered due to the manifestation of similar symptoms before confirming a diagnosis of PSH. PSH has no simple radiological features that can be observed or detected on a scan.
Occupational heat stress is the net load to which a worker is exposed from the combined contributions of metabolic heat, environmental factors, and clothing worn which results in an increase in heat storage in the body. Heat stress can result in heat-related illnesses, such as heat stroke, hyperthermia, heat exhaustion, heat cramps or heat rashes. Although heat exhaustion is less severe, hyperthermia is a medical emergency and requires emergency treatment, which if not provided can even lead to death.
Heat stress causes illness but also may account for an increase in workplace accidents, and a decrease in worker productivity. Worker injuries attributable to heat include those caused by: sweaty palms, fogged-up safety glasses, and dizziness. Burns may also occur as a result of accidental contact with hot surfaces or steam. In United States, occupational heat stress in becoming more significant as the average temperatures increase but remains overlooked. There are few studies and regulations regarding heat exposure of workers.
The treatment options for hypohidrosis and anhidrosis is limited. Those with hypohidrosis should avoid drugs that can aggravate the condition (see medication-causes). They should limit activities that raise the core body temperature and if exercises are to be performed, they should be supervised and be performed in a cool, sheltered and well-ventilated environment. In instances where the cause is known, treatment should be directed at the primary pathology. In autoimmune diseases, such as Sjogren syndrome and systemic sclerosis, treatment of the underlying disease using immunosuppressive drugs may lead to improvement in hypohidrosis. In neurological diseases, the primary pathology is often irreversible. In these instances, prevention of further neurological damage, such as good glycaemic control in diabetes, is the cornerstone of management. In acquired generalized anhidrosis, spontaneous remission may be observed in some cases. Numerous cases have been reported to respond effectively to systemic corticosteroids. Although an optimum dose and regime has not been established, pulse methylprednisolone (up to 1000 mg ⁄ day) has been reported to have good effect.
Treatment initially may include ketamine or midazolam and haloperidol injected into a muscle to sedate the person. Rapid cooling may be required in those with high body temperature. Other supportive measures such as intravenous fluids and sodium bicarbonate may be useful.
Sweat is readily visualized by a topical indicator such as iodinated starch (Minor test) or sodium alizarin sulphonate, both of which undergo a dramatic colour change when moistened by sweat. A thermoregulatory sweat test can evaluate the body’s response to a thermal stimulus by inducing sweating through a hot box ⁄ room, thermal blanket or exercise. Failure of the topical indicator to undergo a colour change during thermoregulatory sweat testing indicates hypohidrosis, and further tests may be required to localize the lesion.
Magnetic resonance imaging of the brain and ⁄ or spinal cord is the best modality for evaluation when the lesion is suspected to be localized to the central nervous system.
Skin biopsies are useful when anhidrosis occurs as part of a dermatological disorder. Biopsy results may reveal the sweat gland destruction, necrosis or fibrosis, in addition to the findings of the primary dermatological disorder.
The prognosis is best when identified early and treated aggressively. In these cases NMS is not usually fatal. In previous studies the mortality rates from NMS have ranged from 20%–38%; however, in the last two decades, mortality rates have fallen below 10% due to early recognition and improved management. Re-introduction to the drug that originally caused NMS to develop may also trigger a recurrence, although in most cases it does not.
Memory impairment is a consistent feature of recovery from NMS, and usually temporary, though in some cases, may become persistent.
Other medical conditions that can resemble excited delirium are panic attack, hyperthermia, diabetes, head injury, delirium tremens, and hyperthyroidism.
Differentiating NMS from other neurological disorders can be very difficult. It requires expert judgement to separate symptoms of NMS from other diseases. Some of the most commonly mistaken diseases are encephalitis, toxic encephalopathy, status epilepticus, heat stroke, and malignant hyperthermia. Due to the comparative rarity of NMS, it is often overlooked and immediate treatment for the syndrome is delayed. Drugs such as cocaine and amphetamine may also produce similar symptoms.
The differential diagnosis is similar to that of hyperthermia, and includes serotonin syndrome. Features which distinguish NMS from serotonin syndrome include bradykinesia, muscle rigidity, and a high white blood cell count.
After centrifuging, the serum of myoglobinuria is clear, where the serum of hemoglobinuria after centrifuge is pink to red.
A genetic test is available for Type 1 PSSM. This test requires a blood or hair sample, and is less-invasive than muscle biopsy. However, it may be less useful for breeds that are more commonly affected by Type 2 PSSM, such as light horse breeds. Often a muscle biopsy is recommended for horses displaying clinical signs of PSSM but who have negative results for GYS1 mutation.
A muscle biopsy may be taken from the semimembranosis or semitendinosis (hamstring) muscles. The biopsy is stained for glycogen, and the intensity of stain uptake in the muscle, as well as the presence of any inclusions, helps to determine the diagnosis of PSSM. This test is the only method for diagnosing Type 2 PSSM. Horses with Type 1 PSSM will usually have between 1.5-2 times the normal levels of glycogen in their skeletal muscle. While abnormalities indicating muscle damage can be seen on histologic sections of muscle as young as 1 month of age, abnormal polysaccharide accumulation may take up to 3 years to develop.
Families who are impacted by SIDS should be offered emotional support and grief counseling. The experience and manifestation of grief at the loss of an infant are impacted by cultural and individual differences.
A large investigation into diphtheria-tetanus-pertussis vaccination and potential SIDS association by Berlin School of Public Health, Charité – Universitätsmedizin Berlin concluded: "Increased DTP immunisation coverage is associated with decreased SIDS mortality. Current recommendations on timely DTP immunisation should be emphasised to prevent not only specific infectious diseases but also potentially SIDS."
Many other studies have also reached conclusions that vaccinations reduce the risk of SIDS. Studies generally show that SIDS risk is approximately halved by vaccinations.
The symptoms of a sympathomimetic toxidrome include anxiety, delusions, diaphoresis, hyperreflexia, mydriasis, paranoia, piloerection, and seizures. Complications include hypertension, and tachycardia. Substances that may cause this toxidrome include salbutamol, amphetamines, cocaine, ephedrine (Ma Huang), methamphetamine, phenylpropanolamine (PPA's), and pseudoephedrine. It may appear very similar to the anticholinergic toxidrome, but is distinguished by hyperactive bowel sounds and sweating.