Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Idiopathic hypersomnia has historically been "difficult to diagnose at an early stage," especially because many other disorders can cause symptoms of excessive daytime sleepiness (EDS). Therefore, "at the time of presentation, most patients have had the disorder for many years."
Further complicating the diagnostic process, idiopathic hypersomnia lacks a clearly defining clinical feature. Whereas narcolepsy is associated with cataplexy and sleep-onset REM episodes, and Kleine-Levin syndrome is associated with megaphagia (compulsive food cravings) and hypersexuality, idiopathic hypersomnia has no such dramatic associated features, except perhaps sleep drunkenness. "Consequently there has been an unfortunate tendency to label all difficult-to-classify cases of excessive daytime sleepiness as idiopathic hypersomnia." For example, upper airway resistance syndrome and delayed sleep phase disorder were formerly confused with idiopathic hypersomnia, but now that they have been more clearly defined, doctors can more carefully exclude these causes of EDS in order to more correctly diagnose idiopathic hypersomnia. However, "even in the presence of other specific causes of hypersomnia, one should carefully assess the contribution of these etiological factors to the complaint of EDS and when specific treatments of these conditions fail to suppress EDS, the [additional] diagnosis of idiopathic hypersomnia should be considered."
The severity of EDS can be quantified by subjective scales, such as the Epworth sleepiness scale and the Stanford sleepiness scale (SSS), and also by objective tests, like the multiple sleep latency test (MSLT)."
In 2001, the ICSD (International Classification of Sleep Disorders) updated their criteria for the diagnosis of idiopathic hypersomnia. Essentially, EDS must be present for at least 6 months, sleep studies (polysomnography and multiple sleep latency test) must show certain characteristics, and all other known causes for long sleep time and EDS must be considered (see hypersomnia). For the patient, this diagnostic process is often tedious, expensive and time-consuming, as other than the sleep studies, it is still basically a diagnosis of exclusion.
In patients with idiopathic hypersomnia, polysomnography typically shows short sleep latency, increased mean slow wave sleep, and a high mean sleep efficiency. "Latency to REM sleep and percentages of light sleep and REM sleep were normal, compared with normal ranges." Despite this, one study has found increased sleep fragmentation in patients with idiopathic hypersomnia without long sleep time, suggesting multiple possible presentations.
It is important to note that although sleep latencies are typically short in idiopathic hypersomnia, the clinical severity may not correlate closely with the MSLT results. In fact, "latencies above 5 minutes are not uncommon in patients with clinically severe hypersomnia." When sleep latency is below 10 minutes, the presence of sleep-onset REM periods (SOREMPs) in two or more of the MSLT naps suggests a diagnosis of narcolepsy, whereas sleep periods lacking rapid eye movement (NREM sleep) in the various naps suggests a diagnosis of idiopathic hypersomnia. However, the importance of this differentiation between REM and NREM has been called into question. (see Classification)
Although the MSLT is currently the best available test to diagnose EDS in general, the MSLT protocol lacks the ability to document the extended, unrefreshing daytime naps that often occur in idiopathic hypersomnia. Complicating the matter, several groups of researchers have found normal MSLT results in patients who otherwise seem to have idiopathic hypersomnia. Therefore, when idiopathic hypersomnia is suspected, researchers suggest appending a 24-hour continuous polysomnography to the standard overnight/MSLT study in order to record total sleep time. Alternatively, an assay of the patient's cerebrospinal fluid (CSF) can be performed in order to test for an adequate level of hypocretin (to exclude narcolepsy with cataplexy) and to determine whether the patient’s CSF abnormally boosts GABA receptor sensitivity (thought to underlie many cases of idiopathic hypersomnia and narcolepsy without cataplexy). Globally, there are very few labs capable of performing the CSF assays referenced above.
It is also important to note that whereas narcolepsy is strongly associated with the HLA-DQB1*0602 genotype, "HLA typing is of no help in the positive diagnosis of idiopathic hypersomnia." This is "despite some reports that suggest an increase frequency of HLA Cw2 and DRS in idiopathic hypersomnia subjects."
The 2001 International Classification of Sleep Disorders (ICSD) divides primary hypersomnia syndromes between narcolepsy, idiopathic hypersomnia, and the recurrent hypersomnias (like Klein-Levin syndrome); it further divides narcolepsy into that with cataplexy and that without cataplexy. This ICSD version defines narcolepsy as a disorder of unknown cause "that is characterized by excessive sleepiness that typically is associated with cataplexy and other REM-sleep phenomena, such as sleep paralysis and hypnagogic hallucinations". It also establishes baseline categorical standards for diagnosis of narcolepsy, through 2 sets of well defined criteria, as follows.
Minimal narcolepsy diagnostic criteria set #2:
- A "complaint of excessive sleepiness or sudden muscle weakness."
- Associated features that include: sleep paralysis; disrupted major sleep episode; hypnagogic hallucinations; automatic behaviors.
- Polysomnography with one or more of the following: "sleep latency less than 10 minutes;" "REM sleep latency less than 20 minutes;" an MSLT with a mean sleep latency less than 5 minutes; "two or more sleep-onset REM periods" (SOREMPs).
- "No medical or mental disorder accounts for the symptoms." (see hypersomnia differential diagnosis)
In the absence of clear cataplexy, it becomes much more difficult to make a firm diagnosis of narcolepsy. “Various terms, such as essential hypersomnia, primary hypersomnia, ambiguous narcolepsy, atypical narcolepsy, etc., have been used to classify these patients, who may be in the developing phase of narcolepsy.”
Since the 2001 ICSD, the classification of primary hypersomnias has been steadily evolving, as further research has shown more overlap between narcolepsy and idiopathic hypersomnia. The 3rd edition of the ICSD is currently being finalized, and its new classification will label narcolepsy caused by orexin deficiency as “type 1 narcolepsy,” which is almost always associated with cataplexy. The other primary hypersomnias will remain subdivided based on the presence of SOREMPs. They will be labeled: “type 2 narcolepsy,” with 2 or more SOREMPs on MSLT; and “idiopathic hypersomnia,” with less than 2 SOREMPS.
However, “there is no evidence that the pathophysiology or therapeutic response is substantially different for hypersomnia with or without SOREMPs on the MSLT.” Given this currently understood overlap of idiopathic hypersomnia and narcolepsy, the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) is also updating its classification of the primary hypersomnias. It reclassifies narcolepsy without cataplexy as major somnolence disorder (MSD). Additionally, MSD will encompass all syndromes of hypersomnolence not explained by low orexin concentrations, including idiopathic hypersomnia (with and without long sleep time) and long sleepers (people requiring >10 hours sleep/day).
Further complicating these updated classification schemes, overlap between narcolepsy "with" cataplexy and idiopathic hypersomnia has also been reported. A subgroup of narcoleptics with long sleep time, comprising 18% of narcoleptics in one study, had symptoms of both narcolepsy with cataplexy and idiopathic hypersomnia (long sleep time and unrefreshing naps). It is believed that this subgroup might have dysfunction in multiple arousal systems, including orexin and GABA (see idiopathic hypersomnia causes).
An adult who is compelled to nap repeatedly during the day may have excessive daytime sleepiness; however, it is important to distinguish between occasional daytime sleepiness and excessive daytime sleepiness, which is chronic.
A number of tools for screening for EDS have been developed. One is the Epworth Sleepiness Scale which grades the results of a questionnaire. The ESS generates a numerical score from zero (0) to 24 where a score of ten [10] or higher may indicate that the person should consult a specialist in sleep medicine for further evaluation.
Another tool is the Multiple Sleep Latency Test (MSLT), which has been used since the 1970s. It is used to measure the time it takes from the start of a daytime nap period to the first signs of sleep, called sleep latency. The test is based on the idea that the sleepier people are, the faster they will fall asleep.
The Maintenance of Wakefulness Test (MWT) is also used to quantitatively assess daytime sleepiness. This test is performed in a sleep diagnostic center. The test is similar to the MSLT. However, during this test the patient is instructed to try to stay awake.
According to a May 2014 article published in NewScientist, spectral analysis may help clinicians find objective evidence for sleep state misperception:
Diagnosis is relatively easy when all the symptoms of narcolepsy are present, but if the sleep attacks are isolated and cataplexy is mild or absent, diagnosis is more difficult. It is also possible for cataplexy to occur in isolation. Three tests that are commonly used in diagnosing narcolepsy are the polysomnogram, the multiple sleep latency test (MSLT), and administration of the Epworth Sleepiness Scale. These tests are usually performed by a sleep specialist. The polysomnogram involves continuous recording of sleep brain waves and a number of nerve and muscle functions during night time sleep. When tested, people with narcolepsy fall asleep rapidly, enter REM sleep early, and may often awaken during the night. The polysomnogram also helps to detect other possible sleep disorders that could cause daytime sleepiness.
The Epworth Sleepiness Scale is a brief questionnaire that is administered to determine the likelihood of the presence of a sleep disorder, including narcolepsy. For the multiple sleep latency test, a person is given a chance to sleep every 2 hours during normal wake times. The patient is taken in usually for an overnight sleep study. The following day the patient will have multiple tests where they will be told to nap after a full nights sleep (usually eight hours). Observations are made of the time taken to reach various stages of sleep (sleep onset latency). This test measures the degree of daytime sleepiness and also detects how soon REM sleep begins. Again, people with narcolepsy fall asleep rapidly and enter REM sleep early. Occasionally, a multiple sleep latency test can result in a false-negative for a narcoleptic.
The system which regulates sleep, arousal, and transitions between these states in humans is composed of three interconnected subsystems: the orexin projections from the lateral hypothalamus, the reticular activating system, and the ventrolateral preoptic nucleus. In narcoleptic individuals, these systems are all associated with impairments due to a greatly reduced number of hypothalamic orexin projection neurons and significantly fewer orexin neuropeptides in cerebrospinal fluid and neural tissue, compared to non-narcoleptic individuals. Those with narcolepsy generally experience the REM stage of sleep within five minutes of falling asleep, while people who do not have narcolepsy (unless they are significantly sleep deprived) do not experience REM until after a period of slow-wave sleep, which lasts for about the first hour or so of a sleep cycle.
Measuring orexin levels in a person's cerebrospinal fluid sampled in a spinal tap may help in diagnosing narcolepsy, with abnormally low levels serving as an indicator of the disorder. This test can be useful when MSLT results are inconclusive or difficult to interpret.
EDS can be a symptom of a number of factors and disorders. Specialists in sleep medicine are trained to diagnose them. Some are:
- Insufficient quality or quantity of night time sleep.
- Misalignments of the body's circadian pacemaker with the environment (e.g. jet lag, shift work or other circadian rhythm sleep disorders).
- Another underlying sleep disorder, such as narcolepsy, sleep apnea, idiopathic hypersomnia or restless legs syndrome.
- Disorders such as clinical depression or atypical depression.
- Tumors, head trauma, anemia, kidney failure, hypothyroidism or an injury to the central nervous system.
- Drug abuse.
- Genetic predisposition
- Vitamin deficiency, such as Biotin deficiency
- Particular classes of prescription and OTC medication
There have been some studies suggesting levothyroxine as a possible treatment for idiopathic hypersomnia, especially for patients with subclinical hypothyroidism. This treatment does carry potential risks (especially for patients without hypothyroidism or subclinical hypothroidism), which include cardiac arrhythmia.
In general, there are two broad classes of treatment, and the two may be combined: psychological (cognitive-behavioral) and pharmacological. In situations of acute distress such as a grief reaction, pharmacologic measures may be most appropriate. With primary insomnia, however, initial efforts should be psychologically based, including discussion of good sleep hygiene. Other specific treatments are appropriate for some of the disorders, such as ingestion of the hormone melatonin, correctly timed bright light therapy and correctly timed dark therapy or light restriction for the circadian rhythm sleep disorders. Specialists in sleep medicine are trained to diagnose and treat these disorders, though many specialize in just some of them.
"The severity of daytime sleepiness needs to be quantified by subjective scales (at least the Epworth Sleepiness Scale) and objective tests such as the multiple sleep latency test (MSLT)." The Stanford sleepiness scale (SSS) is another frequently-used subjective measurement of sleepiness. After it is determined that EDS is present, a complete medical examination and full evaluation of potential disorders in the differential diagnosis (which can be tedious, expensive and time-consuming) should be undertaken.
Treatments for sleep disorders generally can be grouped into four categories:
- Behavioral and psychotherapeutic treatment
- Rehabilitation and management
- Medication
- Other somatic treatment
None of these general approaches is sufficient for all patients with sleep disorders. Rather, the choice of a specific treatment depends on the patient's diagnosis, medical and psychiatric history, and preferences, as well as the expertise of the treating clinician. Often, behavioral/psychotherapeutic and pharmacological approaches are not incompatible and can effectively be combined to maximize therapeutic benefits. Management of sleep disturbances that are secondary to mental, medical, or substance abuse disorders should focus on the underlying conditions.
Medications and somatic treatments may provide the most rapid symptomatic relief from some sleep disturbances. Certain disorders like narcolepsy, are best treated with prescription drugs such as Modafinil. Others, such as chronic and primary insomnia, may be more amenable to behavioral interventions, with more durable results.
Chronic sleep disorders in childhood, which affect some 70% of children with developmental or psychological disorders, are under-reported and under-treated. Sleep-phase disruption is also common among adolescents, whose school schedules are often incompatible with their natural circadian rhythm. Effective treatment begins with careful diagnosis using sleep diaries and perhaps sleep studies. Modifications in sleep hygiene may resolve the problem, but medical treatment is often warranted.
Special equipment may be required for treatment of several disorders such as obstructive apnea, the circadian rhythm disorders and bruxism. In these cases, when severe, an acceptance of living with the disorder, however well managed, is often necessary.
Some sleep disorders have been found to compromise glucose metabolism.
A systematic review found that traumatic childhood experiences (such as family conflict or sexual trauma) significantly increases the risk for a number of sleep disorders in adulthood, including sleep apnea, narcolepsy, and insomnia. It is currently unclear whether or not moderate alcohol consumption increases the risk of obstructive sleep apnea.
In addition, an evidence-based synopses suggests that the sleep disorder, idiopathic REM sleep behavior disorder (iRBD), may have a hereditary component to it. A total of 632 participants, half with iRBD and half without, completed self-report questionnaires. The results of the study suggest that people with iRBD are more likely to report having a first-degree relative with the same sleep disorder than people of the same age and sex that do not have the disorder. More research needs to be conducted to gain further information about the hereditary nature of sleep disorders.
A population susceptible to the development of sleep disorders is people who have experienced a traumatic brain injury (TBI). Because many researchers have focused on this issue, a systematic review was conducted to synthesize their findings. According to their results, TBI individuals are most disproportionately at risk for developing narcolepsy, obstructive sleep apnea, excessive daytime sleepiness, and insomnia. The study's complete findings can be found in the table below:
Although "there has been no cure of chronic hypersomnia", there are several treatments that may improve patients' quality of life, depending on the specific cause or causes of hypersomnia that are diagnosed.
What is considered objective insomnia, unlike SSM, can easily be confirmed empirically through clinical testing, such as by polysomnogram. Those who experience SSM may believe that they have not slept for extended periods of time, when they in fact do sleep but without perceiving it. For example, while patients who claim little or no sleep may usually acknowledge impaired job performance and daytime drowsiness, sleep state misperceivers often do not.
Cases of objective total insomnia are extremely rare. The few that have been recorded have predominantly been ascribed to a rare incurable genetic disorder called fatal familial insomnia, which patients rarely survive for more than 26 months after the onset of illness—often much less. While rarer cases of objective total insomnia lasting for decades have been reported, such as with the American Al Herpin and the Vietnamese Thai Ngoc, they have not been studied extensively in a clinical setting.
There are over 30 recognized kinds of dyssomnias. Major groups of dyssomnias include:
- Intrinsic sleep disorders – 12 disorders recognized, including
- idiopathic hypersomnia,
- narcolepsy,
- periodic limb movement disorder,
- restless legs syndrome,
- sleep apnea,
- sleep state misperception.
- Extrinsic sleep disorders – 13 disorders recognized, including
- alcohol-dependent sleep disorder,
- food allergy insomnia,
- inadequate sleep routine.
- Circadian rhythm sleep disorders, both intrinsic and extrinsic – 6 disorders recognized, including
- advanced sleep phase syndrome,
- delayed sleep phase syndrome,
- jetlag,
- shift work sleep disorder.
KLS can be diagnosed when there is confusion, apathy, or derealization in addition to frequent bouts of extreme tiredness and prolonged sleep. The earliest it can be diagnosed is the second episode, this is not common. The condition is generally treated as a diagnosis of exclusion. Because KLS is rare, other conditions with similar symptoms are usually considered first.
MRIs can determine if the symptoms are caused by certain brain disorders, stroke, and multiple sclerosis. Lumbar puncture can determine if encephalitis is the cause. KLS must be differentiated from substance abuse by toxicology tests. The use of Electroencephalography (EEG) can exclude temporal status epilepticus from consideration. EEGs are normal in about 70% of KLS patients, but background slowing may sometimes be detected. In addition, low-frequency high-amplitude waves can be observed during waking hours.
Initially, KLS appears similar to bipolar depression. Patients with frontal-lobe syndromes and Klüver-Bucy syndrome also display similar symptoms, but these conditions can be differentiated by the presence of brain lesions. KLS should also be distinguished from very rare cases of menstruation-caused hypersomnia.
Lithium is the only drug that appears to have a preventive effect. In two studies of more than 100 patients, lithium helped prevent recurrence of symptoms in 20% to 40% of cases. The recommended blood level of lithium for KLS patients is 0.8-1.2 mEq/ml. It is not known if other mood stabilizers have an effect on the condition. Anti-depressants do not prevent recurrence.
Healthcare providers may screen patients for depression using a screening tool, such as the Patient Healthcare Questionnaire-2 (PHQ-2).
To diagnose a major depressive episode, a trained healthcare provider must make sure that:
- The symptoms do not meet the criteria for a mixed episode.
- The symptoms must cause considerable distress or impair functioning at work, in social settings or in other important areas in order to qualify as an episode.
- The symptoms are not due to the direct physiological effects of a substance (e.g., abuse of a drug or medication) or a general medical condition (e.g., hypothyroidism).
- Other than in the case of severe symptoms (severely impaired functioning, severe preoccupation with worthlessness, ideas of suicide, delusions or hallucinations or psychomotor retardation).
From the :
F33 Recurrent depressive disorder
- G1.There has been at least one previous episode, mild (F32.0), moderate (F32.1), or severe (F32.2 or F32.3), lasting a minimum of 2 weeks and separated from the current episode by at least 2 months free from any significant mood symptoms.
- G2. At no time in the past has there been an episode meeting the criteria or hypomanic or manic episode (F30.-).
- G3. Most commonly used exclusion criteria: the episode is not attributable to psychoactive substance use (F1) or any organic mental disorder, in the sense of F0. It is recommended to specify the predominant type of previous episodes (mild, moderate, severe, uncertain).
F33.0 Recurrent depressive disorder, current episode mild
- A. The general criteria for recurrent depressive disorder (F33) are met.
- B. The current episode meets the criteria for depressive episode, mild severity (F32.0).
- A fifth character may be used to specify the presence of the somatic syndrome, as defined in F32, in the current episode:
- F33.00 without somatic syndrome
- F33.01 with somatic syndrome
F33.1 Recurrent depressive disorder, current episode moderate
- A. The general criteria for recurrent depressive disorders (F33) are met.
- B. The current episode meets the criteria for depressive episode, moderate severity (F32.1).
- A fifth character may be used to specify the presence of the somatic syndrome, as defined in F32, in the current episode:
F33.10 without somatic syndrome
F33.11 with somatic syndrome
F33.2 Recurrent depressive disorder, current episode severe without psychotic symptoms
- A. The general criteria for recurrent depressive disorders (F33) are met.
- B. The current episode meets the criteria for severe depressive episode without psychotic symptoms (F32.2).
F33.3 Recurrent depressive disorder, current episode severe with psychotic symptoms
- A. The general criteria for recurrent depressive disorders (F33) are met.
- B. The current episode meets the criteria for severe depressive episode with psychotic symptoms (F32.3). A fifth character may be used to specify whether the psychotic symptoms are congruent or incongruent with the mood:
F33.30 with mood congruent psychotic symptoms
F33.31 with mood incongruent psychotic symptoms
F33.4 Recurrent depressive disorder, currently in remission
- A. The general criteria for recurrent depressive disorder (F33) have been met in the past.
- B. The current state does not meet the criteria for a depressive episode (F32.-) of any severity, or for any other disorder in F3 (the patient may receive treatment to reduce the risk of further episodes).
F33.8 Other recurrent depressive disorders
F33.9 Recurrent depressive disorder, unspecified
A diagnostic assessment may be conducted by a suitably trained general practitioner, or by a psychiatrist or psychologist, who records the person's current circumstances, biographical history, current symptoms, and family history. The broad clinical aim is to formulate the relevant biological, psychological, and social factors that may be impacting on the individual's mood. The assessor may also discuss the person's current ways of regulating mood (healthy or otherwise) such as alcohol and drug use. The assessment also includes a mental state examination, which is an assessment of the person's current mood and thought content, in particular the presence of themes of hopelessness or pessimism, self-harm or suicide, and an absence of positive thoughts or plans. Specialist mental health services are rare in rural areas, and thus diagnosis and management is left largely to primary-care clinicians. This issue is even more marked in developing countries. The mental health examination may include the use of a rating scale such as the Hamilton Rating Scale for Depression or the Beck Depression Inventory or the Suicide Behaviors Questionnaire-Revised. The score on a rating scale alone is insufficient to diagnose depression to the satisfaction of the DSM or ICD, but it provides an indication of the severity of symptoms for a time period, so a person who scores above a given cut-off point can be more thoroughly evaluated for a depressive disorder diagnosis. Several rating scales are used for this purpose.
Primary-care physicians and other non-psychiatrist physicians have more difficulty with underrecognition and undertreatment of depression compared to psychiatric physicians, in part because of the physical symptoms that often accompany depression, in addition to the many potential patient, provider, and system barriers that the authors describe. A review found that non-psychiatrist physicians miss about two-thirds of cases, though this has improved somewhat in more recent studies.
Before diagnosing a major depressive disorder, in general a doctor performs a medical examination and selected investigations to rule out other causes of symptoms. These include blood tests measuring TSH and thyroxine to exclude hypothyroidism; basic electrolytes and serum calcium to rule out a metabolic disturbance; and a full blood count including ESR to rule out a systemic infection or chronic disease. Adverse affective reactions to medications or alcohol misuse are often ruled out, as well. Testosterone levels may be evaluated to diagnose hypogonadism, a cause of depression in men. Vitamin D levels might be evaluated, as low levels of vitamin D have been associated with greater risk for depression.
Subjective cognitive complaints appear in older depressed people, but they can also be indicative of the onset of a dementing disorder, such as Alzheimer's disease. Cognitive testing and brain imaging can help distinguish depression from dementia. A CT scan can exclude brain pathology in those with psychotic, rapid-onset or otherwise unusual symptoms. In general, investigations are not repeated for a subsequent episode unless there is a medical indication.
No biological tests confirm major depression. Biomarkers of depression have been sought to provide an objective method of diagnosis. There are several potential biomarkers, including Brain-Derived Neurotrophic Factor and various functional MRI techniques. One study developed a decision tree model of interpreting a series of fMRI scans taken during various activities. In their subjects, the authors of that study were able to achieve a sensitivity of 80% and a specificity of 87%, corresponding to a negative predictive value of 98% and a positive predictive value of 32% (positive and negative likelihood ratios were 6.15, 0.23, respectively). However, much more research is needed before these tests could be used clinically.
Though there is no clear-cut way to prevent dysthymia from occurring, some suggestions have been made. Since dysthymia will often first occur in childhood, it is important to identify children who may be at risk. It may be beneficial to work with children in helping to control their stress, increase resilience, boost self-esteem, and provide strong networks of social support. These tactics may be helpful in warding off or delaying dysthymic symptoms.
In 2016, the United States Preventive Services Task Force (USPSTF) recommended screening in the adult populations with evidence that it increases the detection of people with depression and with proper treatment improves outcomes. They recommend screening in those between the age of 12 to 18 as well.
A Cochrane review from 2005 found screening programs do not significantly improve detection rates, treatment, or outcome.
The person may have repeated thoughts about death (other than the fear of dying) or suicide (with or without a plan), or may have made a suicide attempt. The frequency and intensity of thoughts about suicide can range from believing that friends and family would be better off if one were dead, to frequent thoughts about committing suicide (generally related to wishing to stop the emotional pain), to detailed plans about how the suicide would be carried out. Those who are more severely suicidal may have made specific plans and decided upon a day and location for the suicide attempt.
Emergency treatment of cocaine-associated hyperthermia consists of administering a benzodiazepine sedation agent, such as diazepam (Valium) or lorazepam (Ativan) to enhance muscle relaxation and decrease sympathetic outflow from the central nervous system. Physical cooling is best accomplished with tepid water misting and cooling with a fan (convection and evaporation), which can be carried out easily in the field or hospital. There is no specific pharmacological antidote for cocaine overdose. The chest pain, high blood pressure, and increased heart rate caused by cocaine may be also treated with a benzodiazepine. Multiple and escalating dose of benzodiazepines may be necessary to achieve effect, which increases risk of over-sedation and respiratory depression. A comprehensive systematic review of all pharmacological treatments of cocaine cardiovascular toxicity revealed benzodiazepines may not always reliably lower heart rate and blood pressure.
Nitric-oxide mediated vasodilators, such as nitroglycerin and nitroprusside, are effective at lowering blood pressure and reversing coronary arterial vasoconstriction, but not heart rate. Nitroglycerin is useful for cocaine-induced chest pain, but the possibility of reflex tachycardia must be considered. Alpha-blockers such as phentolamine have been recommended and may be used to treat cocaine-induced hypertension and coronary arterial vasoconstriction, but these agents do not reduce heart rate. Furthermore, phentolamine is rarely used, not readily available in many emergency departments, and many present-day clinicians are unfamiliar with its use and titratability. Calcium channel blockers may also be used to treat hypertension and coronary arterial vasoconstriction, but fail to lower tachycardia based on all cocaine-related studies. Non-dihydropyridine calcium channels blockers such as diltiazem and verapamil are preferable, as dihydropyridine agents such as nifedipine have much higher risk of reflex tachycardia.
Agitated patients are best treated with benzodiazepines, but antipsychotics such as haloperidol and olanzapine may also be useful. The alpha-2 agonist dexmedetomidine may also be useful for treatment of agitation, but effects on heart rate and blood pressure are variable based on several studies and case reports. Lidocaine and intravenous lipid emulsion have been successfully used for serious ventricular tachyarrhythmias in several case reports.
The use of beta-blockers for cocaine cardiovascular toxicity has been subject to a relative contraindication by many clinicians for several years despite extremely limited evidence. The phenomenon of “unopposed alpha-stimulation,” in which blood pressure increases or coronary artery vasoconstriction worsens after blockade of beta-2 vasodilation in cocaine-abusing patients, is controversial. This rarely-encountered and unpredictable adverse effect has resulted in some clinicians advocating for an absolute contraindication of the use of all beta-blockers, including specific, non-specific, and mixed. Many clinicians have disregarded this dogma and administer beta-blockers for cocaine-related chest pain and acute coronary syndrome, especially when there is demand ischemia from uncontrolled tachycardia. Of the 1,744 total patients identified in the aforementioned systematic review, only 7 adverse events were from putative cases of “unopposed alpha-stimulation” due to propranolol (n=3), esmolol (n=3), and metoprolol (n=1). Some detractors of beta-blockers for cocaine-induced chest pain have cited minimal acute mortality and the short half-life of the drug, making it unnecessary to aggressively treat any associated tachycardia and hypertension. However, the long-term effect of cocaine use and development of heart failure, with early mortality, high morbidity, and tremendous demand on hospital utilization should be taken under consideration.
The mixed beta/alpha blocker labetalol has been shown to be safe and effective for treating concomitant cocaine-induced hypertension and tachycardia, without any “unopposed alpha-stimulation” adverse events recorded. The use of labetalol is approved by a recent AHA/ACC guideline for cocaine and methamphetamine patients with unstable angina/non-STEMI.
Both psychotherapy as well as different drugs (e.g. serotonin reuptake inhibitors - SSRIs or mood stabilizers, e.g. lithium, antiepileptics) have been suggested as treatments. However, no randomized controlled treatment trial of RBD has been conducted.
The medication that may be prescribed to someone who has a mental breakdown is based upon the underlying causes, which are sometimes more serious mental disorders. Antidepressants are given to treat depression. Anxiolytics are used for those with anxiety disorders. Antipsychotics are used for schizophrenia and mood stabilizers help with bipolar disorder. Depending upon what caused a person’s mental breakdown, any of these treatments can be helpful for them.
There are several different kinds of therapy that a patient can receive. The most common type of therapy is counseling. This is where the patient is able to talk about whatever is on their mind without worrying about any judgments. Psychotherapy is a very common type of therapy that addresses the current problems in someone’s life and helps them to deal with them. Past experiences may also be explored in this type of therapy. In psychoanalysis therapy, the main focus is a patient’s past experiences so that they can confront these issues and prevent breakdowns in the future. Cognitive behavioral therapy explores how a person behaves and what they are thinking and feeling. If there is anything negative in these three different categories, then this therapy will try to turn them around into positives. Hypnotherapy is where hypnosis is performed and used to help the patient relax. Hypnosis can also be used to figure out why a person acts or feels a certain way, by examining past events that may have caused the breakdown. Expressive therapy focuses on how the patient is able to express their feelings. If the patient has a hard time doing this, expression through the arts is highly recommended. There is also aromatherapy, which consists of herbs to help the patient relax and to try to relieve stress. Yoga and massage may also be included in this therapy that will help the muscles to relax. Meditation is also often recommended. All of these therapies help a person to relax and de-stress and also help to prevent future breakdowns.