Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of IP is established by clinical findings and occasionally by corroborative skin biopsy. Molecular genetic testing of the NEMO IKBKG gene (chromosomal locus Xq28) reveals disease-causing mutations in about 80% of probands. Such testing is available clinically.
In addition, females with IP have skewed X-chromosome inactivation; testing for this can be used to support the diagnosis.
Many people in the past were misdiagnosed with a second type of IP, formerly known as IP1. This has now been given its own name - 'Hypomelanosis of Ito' (incontinentia pigmenti achromians). This has a slightly different presentation: swirls or streaks of hypopigmentation and depigmentation. It is "not" inherited and does not involve skin stages 1 or 2. Some 33–50% of patients have multisystem involvement — eye, skeletal, and neurological abnormalities. Its chromosomal locus is at Xp11, rather than Xq28.
Acanthosis nigricans should be distinguished from the casal collar appearing in pellagra.
Diagnosis is made primarily through physical assessment of the skin, family history of Mongolian spots, and subjective data given by the care giver. No tests are currently available for diagnosing Mongolian spots.
Acanthosis nigricans is typically diagnosed clinically. A skin biopsy may be needed in unusual cases. If no clear cause is obvious, it may be necessary to search for one. Blood tests, an endoscopy, or X-rays may be required to eliminate the possibility of diabetes or cancer as the cause.
On biopsy, hyperkeratosis, epidermal folding, leukocyte infltration, and melanocyte proliferation may be seen.
Diagnosis usually occurs upon investigation of a cause for already suspected Cushing's syndrome. High levels of cortisol observed in patients with PPNAD are not suppressed upon administration of dexamethasone (dexamethasone suppression test), and upon MRI or CT imaging, the pituitary will show no abnormalities. Measuring ACTH will confirm that the cause of the patients Cushing's syndrome is ACTH independent. The nature of Cushing's syndrome itself is periodic, which can make diagnosing PPNAD increasingly difficult.
Diagnosis of PPNAD can be difficult to determine preoperatively as CT scan findings can be variable ie appear normal or suggest unilateral adrenal lesions therefore impeding the correct diagnosis. NP-59 scintigraphy may be particularly useful in identifying the bilateral nature of the disease.
Gene studies are not necessary for diagnosis as there are clear gross and histological diagnostic markers, as the nodules can usually be seen clearly in both cases A positive family history of PPNAD has been shown to be associated with abnormal histological findings, e.g. mitotic figures, which may further hinder diagnosis. At the point where abdominal CT scanning and pituitary fossa MRI show no clear abnormalities, adrenalectomy may be performed.
Mongolian spots usually resolve by early childhood and hence no treatment is generally needed if they are located in the sacral area. However, sometimes it may be required for extra sacral lesions to have surgical correction. Q-switched alexandrite lasers have been used for treatment. Good results are obtained if treatment is initiated before the age of 20 years. In a study done by the University of Tokyo, the effectiveness of the Q-switched alexandrite laser in treating Mongolian spots was evaluated. A retrospective study was done from April 2003 to September 2011. 16 patients, aged 14-55, were treated with Q-switched alexandrite laser. A good therapeutic outcome was achieved on the whole group, however two patients with sacral Mongolian spots suffered from inflammatory hyperpigmentation, and two patients got post inflammatory hypopigmentation after seven sessions of laser treatment.
There does not yet exist a specific treatment for IP. Treatment can only address the individual symptoms.
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
As Becker's nevus is considered a benign lesion, treatment is generally not necessary except for cosmetic purposes. Shaving or trimming can be effective in removing unwanted hair, while electrology or laser hair removal may offer a longer-lasting solution. Different types of laser treatments may also be effective in elimination or reduction of hyperpigmentation, though the results of laser treatments for both hair and pigment reduction appear to be highly variable.
A 1991 report documented the cases of nine patients with both Becker's nevus and malignant melanoma. Of the nine melanomas, five were in the same body area as the Becker's nevus, with only one occurring within the nevus itself. As this was apparently the first documented co-occurrence of the two diseases, there is so far no evidence of higher malignancy rates in Becker's nevi versus normal skin. Nonetheless, as with any abnormal skin growth, the nevus should be monitored regularly and any sudden changes in appearance brought to the attention of one's doctor.
Improvement or stabilization of the condition has been reported with topical and intralesional corticosteroids, antibiotics, hydroxychloroquine, topical and oral immunomodulators, tacrolimus, and most recently, 5-alpha-reductase inhibitors. In one study, the use of anti-androgens (finasteride or dutasteride) was associated with improvement in 47% and stabilization in 53% of patients
A Q-switched laser has been successfully used to treat the condition.
After diagnosis, it is important for patients to be continually monitored. The most common treatment for PPNAD is bilateral laparoscopic adrenalectomy; the process by which both adrenal glands are removed by a small incision.
Patients who have received this treatment will be prescribed mineralocorticoid and glucocorticoid steroids as they are no longer being naturally produced.
This is a treatment which has been used and refined since 1984.
HED2 is suspected after infancy on the basis of physical features in most affected individuals. GJB6 is the only gene known to be associated with HED2. Targeted mutation analysis for the four most common GJB6 mutations is available on a clinical basis and detects mutations in approximately 100% of affected individuals. Sequence analysis is also available on a clinical basis for those in whom none of the four known mutations is identified.
The isochromosome i(12p) can be primarily detected in samples of skin fibroblasts, as well as in chorionic villus and amniotic fluid cell samples. Very rarely, it can also be detected in blood lymphocytes. It is also possible to detect the isochromosome in circulating lymphocytes, as well as other amniotic and placental samples. There is no strict limit as to where the isochromosome can be found. However, it is often unlikely that these samples will be tested when the blood karyotype is normal.
Using an ultrasound, Pallister-Killian may be diagnosed through observation of hypertelorism, broad neck, shorts limbs, abnormal hands or feet, diaphragmatic hernia, and hydramnios. Once born, a child may be diagnosed by observation of the syndrome's distinct facial features.
In suspected cases of Addison's disease, demonstration of low adrenal hormone levels even after appropriate stimulation (called the ACTH stimulation test or synacthen test) with synthetic pituitary ACTH hormone tetracosactide is needed for the diagnosis. Two tests are performed, the short and the long test. It should be noted that dexamethasone does not cross-react with the assay and can be administered concomitantly during testing.
The short test compares blood cortisol levels before and after 250 micrograms of tetracosactide (intramuscular or intravenous) is given. If, one hour later, plasma cortisol exceeds 170 nmol/l and has risen by at least 330 nmol/l to at least 690 nmol/l, adrenal failure is excluded. If the short test is abnormal, the long test is used to differentiate between primary adrenal insufficiency and secondary adrenocortical insufficiency.
The long test uses 1 mg tetracosactide (intramuscular). Blood is taken 1, 4, 8, and 24 hr later. Normal plasma cortisol level should reach 1000 nmol/l by 4 hr. In primary Addison's disease, the cortisol level is reduced at all stages, whereas in secondary corticoadrenal insufficiency, a delayed but normal response is seen.
Other tests may be performed to distinguish between various causes of hypoadrenalism, including renin and adrenocorticotropic hormone levels, as well as medical imaging - usually in the form of ultrasound, computed tomography or magnetic resonance imaging.
Adrenoleukodystrophy, and the milder form, adrenomyeloneuropathy, cause adrenal insufficiency combined with neurological symptoms. These diseases are estimated to be the cause of adrenal insufficiency in about 35% of male patients with idiopathic Addison’s disease, and should be considered in the differential diagnosis of any male with adrenal insufficiency. Diagnosis is made by a blood test to detect very long chain fatty acids.
There are a wide range of depigmenting treatments used for hyperpigmentation conditions, and responses to most are variable.
Most often treatment of hyperpigmentation caused by melanin overproduction (such as melasma, acne scarring, liver spots) includes the use of topical depigmenting agents, which vary in their efficacy and safety, as well as in prescription rules. Several are prescription only in the US, especially in high doses, such as hydroquinone, azelaic acid, and koijic acid. Some are available without prescription, such as niacinamide, or cysteamine hydrochloride. Hydroquinone was the most commonly prescribed hyperpigmentation treatment before the long-term safety concerns were raised, and the use of it became more regulated in several countries and discouraged in general by WHO. For the US only 2% is at present sold over-the-counter, and 4% needs prescription. In the EU hydroquinone was banned from cosmetic applications. Treatments that do not involve topical agents are also available, including fraction lasers and dermabrasion.
Linear and whorled nevoid hypermelanosis (also known as "Linear nevoid hyperpigmentation," "Progressive cribriform and zosteriform hyperpigmentation," "Reticulate and zosteriform hyperpigmentation," "Reticulate hyperpigmentation of Iijima and Naito and Uyeno," "Zebra-like hyperpigmentation in whorls and streaks," and "Zebra-line hyperpigmentation") is a disorder of pigmentation that develops within a few weeks of birth and progresses for one to two years before stabilizing. There is linear and whorled hyperpigmentation following the lines of Blaschko without preceding bullae or verrucous lesions. It is important to exclude other pigmentary disorders following the Blaschko lines before making a diagnosis of linear and whorled nevoid hypermelanosis.The differential diagnoses include incontinentia pigmenti, linear epidermal nevus, hypomelanosis of Ito and Goltz syndrome. Recently, a case of linear and whorled nevoid hypermelanosis was reported in a Malaysian Chinese girl.
Many skin conditions can mimic acne vulgaris and are collectively known as acneiform eruptions. Such conditions include angiofibromas, epidermal cysts, flat warts, folliculitis, keratosis pilaris, milia, perioral dermatitis, and rosacea, among others. Age is one factor which may help distinguish between these disorders. Skin disorders such as perioral dermatitis and keratosis pilaris can appear similar to acne but tend to occur more frequently in childhood, whereas rosacea tends to occur more frequently in older adults. Facial redness triggered by heat or the consumption of alcohol or spicy food is suggestive of rosacea. The presence of comedones helps health professionals differentiate acne from skin disorders that are similar in appearance. Chloracne, due to exposure to certain chemicals, may look very similar to acne vulgaris.
In 1989, diagnostic criteria was created for the diagnosing of Winchester syndrome. The typical diagnosis criteria begin with skeletal radiological test results and two of the defining symptoms, such as short stature, coarse facial features, hyperpigmentation, or excessive hair growth. The typical tests that are performed are x-ray and magnetic resonance imaging. It appears that Winchester syndrome is more common in women than men. Winchester syndrome is very rare. There have only been a few individuals worldwide who were reported to have this disorder.
Important diagnoses to consider include female pattern hair loss (FPHL), chronic telogen effluvium (CTE), and alopecia areata (AA). FPHL is a non-scarring progressive miniaturization of the hair follicle with one of three different characteristic patterns. CTE is an idiopathic disease causing increased hair shedding and bi-temporal recession, usually in middle aged women. AA is an autoimmune attack of hair follicles that usually causes hair to fall out in small round patches.
Nevus of Ota (also known as "congenital melanosis bulbi", "nevus fuscoceruleus ophthalmomaxillaris", "oculodermal melanocytosis", and "oculomucodermal melanocytosis") is a blue hyperpigmentation that occurs on the face. It was first reported by Dr. M.T. Ota of Japan in 1939.
Nevus of Ota is caused by the entrapment of melanocytes in the upper third of the dermis. It is found on the face unilaterally and involves the first two branches of the trigeminal nerve. The sclera is involved in two-thirds of cases (causing an increased risk of glaucoma). It should not be confused with Mongolian spot, which is a birthmark caused by entrapment of melanocytes in the dermis but is located in the lumbosacral region. Women are nearly five times more likely to be affected than men, and it is rare among Caucasian people. Nevus of Ota may not be congenital, and may appear during puberty.
Familial progressive hyperpigmentation is characterized by patches of hyperpigmentation, present at birth, which increase in size and number with age. This is a genetic disease, however the gene that accounts for this spotty darkening of the skin has yet to be discovered. Although rare, the congenital disease is most prevalent among populations originating from China.
Lelis syndrome it is a genetic disorder, a rare condition with dermatological and dental findings characterized by the association of ectodermal dysplasia (hypotrichosis and hypohidrosis) with acanthosis nigricans. Other clinical features may include palmoplantar hyperkeratosis, nail dystrophy, intellectual deficit, disturbances of skin pigmentation (perioral and periorbital hyperpigmentation, vitiligo, and perinevic leukoderma) and hypodontia. Transmission is autosomal recessive.
Comedones (blackheads and whiteheads) must be present to diagnose acne. In their absence, an appearance similar to that of acne would suggest a different skin disorder. Microcomedones (the precursor to blackheads and whiteheads) are not visible to the naked eye when inspecting the skin and can only be seen with a microscope. There are many features that may indicate a person's acne vulgaris is sensitive to hormonal influences. Historical and physical clues that may suggest hormone-sensitive acne include onset between ages 20 and 30; worsening the week before a woman's menstrual cycle; acne lesions predominantly over the jawline and chin; and inflammatory/nodular acne lesions.
Several scales exist to grade the severity of acne vulgaris, but no single technique has been universally accepted as the diagnostic standard. Cook's acne grading scale uses photographs to grade severity from 0 to 8 (0 being the least severe and 8 being the most severe). This scale was the first to use a standardized photographic protocol to assess acne severity; since its creation in 1979, the scale has undergone several revisions. The Leeds acne grading technique counts acne lesions on the face, back, and chest and categorizes them as inflammatory or non-inflammatory. Leeds scores range from 0 (least severe) to 10 (most severe) though modified scales have a maximum score of 12. The Pillsbury acne grading scale simply classifies the severity of the acne from 1 (least severe) to 4 (most severe).