Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
No treatment is generally required, as bone demineralisation and kidney stones are relatively uncommon in the condition.
As most cases of FHH are asymptomatic and benign, the diagnosis of FHH is less likely to be made.
Typically, diagnosis is made in the pursuit of uncovering the etiology of hypercalcemia.
Calcium levels are often in the high normal range or slightly elevated.
Commonly, the parathyroid hormone level is checked and may be slightly elevated or also on the high normal end.
Normally, high calcium should cause low PTH and so this level of PTH is inappropriately high due to the decreased sensitivity of the parathyroid to calcium.
This may be mistaken for primary hyperparathyroidism.
However, evaluation of urine calcium level will reveal a low level of urine calcium.
This too is inappropriate as high serum calcium should result in high urine calcium.
If urine calcium is not checked, this may lead to parathyroidectomy for presumed primary hyperparathyroidism.
Additionally as the name implies, there may be a family history of benign hypercalcemia.
Ultimately, diagnosis of familial hypocalciuric hypercalcemia is made — as the name implies — by the combination of low urine calcium and high serum calcium.
The gold standard of diagnosis is the parathyroid immunoassay. Once an elevated Parathyroid hormone has been confirmed, goal of diagnosis is to determine whether the hyperparathyroidism is primary or secondary in origin by obtaining a serum calcium level:
Tertiary hyperparathyroidism has a high PTH and a high serum calcium. It is differentiated from primary hyperparathyroidism by a history of chronic kidney failure and secondary hyperparathyroidism.
Familial benign hypocalciuric hypercalcaemia can present with similarly lab changes. In this condition the calcium creatinine clearance ratio; however, is typically under 0.01.
The diagnosis of primary hyperparathyroidism is made by blood tests.
Serum calcium levels are elevated, and the parathyroid hormone level is abnormally high compared with an expected low level in response to the high calcium. A relatively elevated parathyroid hormone has been estimated to have a sensitivity of 60%-80% and a specificity of approximately 90% for primary hyperparathyroidism.
A more powerful variant of comparing the balance between calcium and parathyroid hormone is to perform a 3-hour calcium infusion. After infusion, a parathyroid hormone level above a cutoff of 14 ng/l has a sensitivity of 100% and a specificity of 93% in detecting primary hyperparathyroidism, with a confidence interval of 80% to 100%.
Urinary cAMP is occasionally measured; this is generally elevated.
Biochemical confirmation of primary hyperparathyroidism is following by investigations to localize the culprit lesion. Primary hyperparathyroidism is most commonly due to solitary parathyroid adenoma. Less commonly it may be due to double parathyroid adenomas or parathyroid hyperplasia. Tc99 sestamibi scan of head, neck and upper thorax is the most commonly used test for localizing parathyroid adenomas having a sensitivity and specificity of 70-80%. Sensitivity falls down to 30% in case of double/multiple parathyroid adenomas or in case of parathyroid hyperplasia. Ultrasonography is also a useful test in localizing suspicious parathyroid lesions.
Hypophosphatemia is diagnosed by measuring the concentration of phosphate in the blood. Concentrations of phosphate less than 0.81 mmol/L (2.5 mg/dL) are considered diagnostic of hypophosphatemia, though additional tests may be needed to identify the underlying cause of the disorder.
If the underlying cause of the hypocalcemia can be addressed, the hyperparathyroidism will resolve. In people with chronic renal failure, treatment consists of dietary restriction of phosphorus, supplements with an active form of vitamin D such as calcitriol, doxercalciferol, paricalcitol, etc. and phosphate binders which can be divided into calcium-based and non-calcium based.
Extended Release Calcifediol was recently approved by the FDA as a treatment for secondary hyperparathyroidism (SHPT) in adults with stage 3 or 4 chronic �kidney disease (CKD) and low vitamin D blood levels (25-hydroxyvitamin D less than 30 ng/mL). It can help treat SHPT by increasing Vitamin D levels and lowering parathyroid hormone or PTH. It is �not for patients with stage 5 CKD or on dialysis.
In the treatment of secondary hyperparathyroidism due to chronic kidney disease on dialysis calcimimetics do not appear to affect the risk of early death. It does decrease the need for a parathyroidectomy but caused more issues with low blood calcium levels and vomiting.
Most people with hyperparathyroidism secondary to chronic kidney disease will improve after renal transplantation, but many will continue to have a degree of residual hyperparathyroidism (tertiary hyperparathyroidism) post-transplant with associated risk of bone loss, etc.
The pH of patient's blood is highly variable, and acidemia is not necessarily characteristic of sufferers of dRTA at any given time. One may have dRTA caused by alpha intercalated cell failure without necessarily being acidemic; termed "incomplete dRTA," which is characterized by an inability to acidify urine, without affecting blood pH or plasma bicarbonate levels. The diagnosis of dRTA can be made by the observation of a urinary pH of greater than 5.3 in the face of a systemic acidemia (usually taken to be a serum bicarbonate of 20 mmol/l or less). In the case of an incomplete dRTA, failure to acidify the urine following an oral acid loading challenge is often used as a test. The test usually performed is "the short ammonium chloride test", in which ammonium chloride capsules are used as the acid load. More recently, an alternative test using furosemide and fludrocortisone has been described.
Interestingly, dRTA has been proposed as a possible diagnosis for the unknown malady plaguing Tiny Tim in Charles Dickens' A Christmas Carol.
The limited prognostic information available suggests that early diagnosis and appropriate treatment of infants and young children with classic Bartter Syndrome may improve growth and perhaps neurointellectual development. On the other hand, sustained hypokalemia and hyperreninemia can cause progressive tubulointerstitial nephritis, resulting in end-stage kidney disease (kidney failure). With early treatment of the electrolyte imbalances, the prognosis for patients with classic Bartter Syndrome is good.
The amount of biologically active calcium varies with the level of serum albumin, a protein to which calcium is bound, and therefore levels of "ionized calcium" are better measures than a "total calcium"; however, one can correct a "total calcium" if the albumin level is known.
- A normal "ionized calcium" is 1.12-1.45 mmol/L (4.54-5.61 mg/dL).
- A normal "total calcium" is 2.2-2.6 mmol/L (9-10.5 mg/dl).
- "Total calcium" of less than 8.0 mg/dL is hypocalcaemia, with levels below 1.59 mmol/L (6 mg/dL) generally fatal.
- "Total calcium" of more than 10.6 mg/dL is hypercalcaemia, with levels over 3.753 mmol/L (15.12 mg/dL) generally fatal.
Abnormal heart rhythms can also result, and ECG findings of a short QT interval suggest hypercalcaemia. Significant hypercalcaemia can cause ECG changes mimicking an acute myocardial infarction. Hypercalcaemia has also been known to cause an ECG finding mimicking hypothermia, known as an Osborn wave.
If left untreated, the disease will progress to tertiary hyperparathyroidism, where correction of the underlying cause will not stop excess PTH secretion, i.e. parathyroid gland hypertrophy becomes irreversible. In contrast with secondary hyperparathyroidism, tertiary hyperparathyroidism is associated with hypercalcemia rather than hypocalcemia.
The surgical removal of one or more of the parathyroid glands is known as a parathyroidectomy; this operation was first performed in 1925. The symptoms of the disease, listed above, are indications for surgery. Surgery reduces all cause mortality as well as resolving symptoms. However, cardiovascular mortality is not significantly reduced.
The 2002 NIH Workshop on Asymptomatic Primary Hyperparathyroidism developed criteria for surgical intervention . The criteria were revised at the Third International Workshop on the Management of Asymptomatic Primary Hyperparathyroidism . These criteria were chosen on the basis of clinical experience and observational and clinical trial data as to which patients are more likely to have end-organ effects of primary hyperparathyroidism (nephrolithiasis, skeletal involvement), disease progression if surgery is deferred, and the most benefit from surgery. The panel emphasized the need for parathyroidectomy to be performed by surgeons who are highly experienced and skilled in the operation. The Third International Workshop guidelines concluded that surgery is indicated in asymptomatic patients who meet any one of the following conditions:
- Serum calcium concentration of 1.0 mg/dL (0.25 mmol/L) or more above the upper limit of normal
- Creatinine clearance that is reduced to <60 mL/min
- Bone density at the hip, lumbar spine, or distal radius that is more than 2.5 standard deviations below peak bone mass (T score <-2.5) and/or previous fragility fracture
- Age less than 50 years
Operative intervention can be delayed in patients over 50 years of age who are asymptomatic or minimally symptomatic and who have serum calcium concentrations <1.0 mg/dL (0.2 mmol/L) above the upper limit of normal, and in patients who are medically unfit for surgery
More recently, three randomized controlled trials have studied the role of surgery in patients with asymptomatic hyperparathyroidism. The largest study reported that surgery resulted in an increase in bone mass, but no improvement in quality of life after one to two years among patients in the following groups:
- Untreated, asymptomatic primary hyperparathyroidism
- Serum calcium between 2.60–2.85 mmol/liter (10.4–11.4 mg/dl)
- Age between 50 and 80 yr
- No medications interfering with Ca metabolism
- No hyperparathyroid bone disease
- No previous operation in the neck
- Creatinine level < 130 µmol/liter (<1.47 mg/dl)
Two other trials reported improvements in bone density and some improvement in quality of life with surgery.
Standard intravenous preparations of potassium phosphate are available and are routinely used in malnourished patients and alcoholics. Oral supplementation is also useful where no intravenous treatment are available. Historically one of the first demonstrations of this was in concentration camp victims who died soon after being re-fed: it was observed that those given milk (high in phosphate) had a higher survival rate than those who did not get milk.
Monitoring parameters during correction with IV phosphate
- Phosphorus levels should be monitored after 2 to 4 hours after each dose, also monitor serum potassium, calcium and magnesium. Cardiac monitoring is also advised.
Nephrocalcinosis is diagnosed for the most part by imaging techniques. The imagings used are ultrasound (US), abdominal plain film and CT imaging. Of the 3 techniques CT and US are the more preferred. Nephrocalcinosis is considered present if at least two radiologists make the diagnosis on US and/or CT. In some cases a renal biopsy is done instead if imaging is not enough to confirm nephrocalcinosis. Once the diagnosis is confirmed additional testing is needed to find the underlying cause because the underlying condition may require treatment for reasons independent of nephrocalcinosis. These additional tests will measure serum, electrolytes, calcium, and phosphate, and the urine pH. If no underlying cause can be found then urine collection should be done for 24 hours and measurements of the excretion of calcium, phosphate, oxalate, citrate, and creatinine are looked at.
Increasing fluid intake to yield a urine output of greater than 2 liters a day can be advantageous for all patients with nephrocalcinosis. Patients with hypercalciuria can reduce calcium excretion by restricting animal protein, limiting sodium intake to less than 100 meq a day and being lax of potassium intake. If changing ones diet alone does not result in an suitable reduction of hypercalciuria, a thiazide diuretic can be administered in patients who do not have hypercalcemia. Citrate can increase the solubility of calcium in urine and limit the development of nephrocalcinosis. Citrate is not given to patients who have urine pH equal to or greater than 7.
This is relatively straightforward. It involves correction of the acidemia with oral sodium bicarbonate, sodium citrate or potassium citrate. This will correct the acidemia and reverse bone demineralisation. Hypokalemia and urinary stone formation and nephrocalcinosis can be treated with potassium citrate tablets which not only replace potassium but also inhibit calcium excretion and thus do not exacerbate stone disease as sodium bicarbonate or citrate may do.
While patients should be encouraged to include liberal amounts of sodium and potassium in their diet, potassium supplements are usually required, and spironolactone is also used to reduce potassium loss.
Nonsteroidal anti-inflammatory drugs (NSAIDs) can be used as well, and are particularly helpful in patients with neonatal Bartter's syndrome.
Angiotensin-converting enzyme (ACE) inhibitors can also be used.
Initial therapy:
- hydration, increasing salt intake, and forced diuresis.
- hydration is needed because many patients are dehydrated due to vomiting or kidney defects in concentrating urine.
- increased salt intake also can increase body fluid volume as well as increasing urine sodium excretion, which further increases urinary potassium excretion.
- after rehydration, a loop diuretic such as furosemide can be given to permit continued large volume intravenous salt and water replacement while minimizing the risk of blood volume overload and pulmonary oedema. In addition, loop diuretics tend to depress calcium reabsorption by the kidney thereby helping to lower blood calcium levels
- can usually decrease serum calcium by 1–3 mg/dL within 24 hours
- caution must be taken to prevent potassium or magnesium depletion
OFC may be diagnosed using a variety of techniques. Muscles in patients afflicted with OFC can either appear unaffected or "bulked up." If muscular symptoms appear upon the onset of hyperparathyroidism, they are generally sluggish contraction and relaxation of the muscles. Deviation of the trachea (a condition in which the trachea shifts from its position at the midline of the neck), in conjunction with other known symptoms of OFC can point to a diagnosis of parathyroid carcinoma.
Blood tests on patients with OFC generally show high levels of calcium (normal levels are considered to range between 8.5 and 10.2 mg/dL, parathyroid hormone (levels generally above 250 pg/mL, as opposed to the "normal" upper-range value of 65 pg/mL), and alkaline phosphatase(normal range is 20 to 140 IU/L).
X-rays may also be used to diagnose the disease. Usually, these X-rays will show extremely thin bones, which are often bowed or fractured. However, such symptoms are also associated with other bone diseases, such as osteopenia or osteoporosis. Generally, the first bones to show symptoms via X-ray are the fingers. Furthermore, brown tumors, especially when manifested on facial bones, can be misdiagnosed as cancerous. Radiographs distinctly show bone resorption and X-rays of the skull may depict an image often described as "ground glass" or "salt and pepper". Dental X-rays may also be abnormal.
Cysts may be lined by osteoclasts and sometimes blood pigments, which lend to the notion of "brown tumors." Such cysts can be identified with nuclear imaging combined with specific tracers, such as sestamibi. Identification of muscular degeneration or lack of reflex can occur through clinical testing of deep tendon reflexes, or via photomotogram (an achilles tendon reflex test).
Fine needle aspiration (FNA) can be used to biopsy bone lesions, once found on an X-ray or other scan. Such tests can be vital in diagnosis and can also prevent unnecessary treatment and invasive surgery. Conversely, FNA biopsy of tumors of the parathyroid gland is not recommended for diagnosing parathyroid carcinoma and may in fact be harmful, as the needle can puncture the tumor, leading to dissemination and the possible spread of cancerous cells.
The brown tumors commonly associated with OFC display many of the same characteristics of osteoclasts. These cells are characteristically benign, feature a dense, granular cytoplasm, and a nucleus that tends to be ovular in shape, enclosing comparatively fine chromatin. Nucleoli also tend to be smaller than average.
The single major disease of parathyroid glands is overactivity of one or more of the parathyroid lobes, which make too much parathyroid hormone, causing a potentially serious calcium imbalance. This is called hyperparathyroidism; it leads to hypercalcemia, kidney stones, osteoporosis, and various other symptoms. Hyperparathyroidism was first described in 1925 and the symptoms have collectively become known as "moans, groans, stones, and bones." By far, the most common symptom is fatigue, but depression, memory loss, and bone aches are also very common. Primary hyperparathyroidism is relatively more common in postmenopausal women. The primary treatment for this disease is the surgical removal of the faulty gland.
If a patient has elevated calcium, several different types of tests can be used to locate the abnormal glands. The most common and most accurate test to find a parathyroid tumor is the Sestamibi scan. The Sestamibi scan does not have high resolution. Neck ultrasound has higher resolution, but requires some expertise to perform. Ultrasound's shortcomings include: it cannot determine glandular function (normal vs. hyperfunctioning) or visualize unusual locations such as retropharyngeal or mediastinal. Thin cut computed tomography of the neck can reveal glands in locations that the ultrasound cannot evaluate well; e.g. retropharyngeal, mediastinal. These tests are ordered by an endocrinologist or a surgeon that specializes in parathyroid surgery. Often, these "localizing" tests used to "find" the bad parathyroid gland are not successful in locating which parathyroid gland has become a tumor. This often causes confusion for the patient and doctor, since the tumor was not located. This simply means that the tumor was not found using these tests; it does not mean the tumor does not exist. The use of ultrasound-guided FNA, and parathyroid hormone washings can confirm the abnormal glands. For decades, it has been known that the best way to find a parathyroid tumor is through a very experienced parathyroid surgeon.
Even if a patient has a non-localizing Sestamibi scan (a negative sestamibi scan), he/she should almost always have a neck exploration to remove the tumor if he/she has high calcium levels, among other symptoms. Minimally-invasive parathyroid surgery is becoming more available, but, depending on the expertise of the surgeon, the patient may need to have a positive sestamibi scan before a minimally-invasive operation is attempted. Some of the most experienced surgeons perform mini-parathyroid surgery on all patients, but this is available only at highly specialized centers. Some patients will need both sides of their necks explored to find the dysfunctional gland(s).
Another related condition is called secondary hyperparathyroidism (HPT for short), which is common in patients with chronic kidney disease on dialysis. In secondary HPT, the parathyroid glands make too much parathyroid hormone (PTH) because the kidneys have failed, and the calcium and phosphorus are out of balance. Even though one may not have any symptoms, treating secondary HPT is important. Cinacalcet (Sensipar) is a medicine that can help treat such dialysis patients and is available by prescription only. Most experts believe that Sensipar should not be used for patients with primary hyperparathyroidism (patients that have a high calcium and are not on kidney dialysis).
Parathyroid surgery is usually performed when there is hyperparathyroidism. This condition causes many diseases related with calcium reabsorption, because the principal function of the parathyroid hormone is to regulate it. Parathyroid surgery could be performed in two different ways: first is a complete parathyroidectomy, and second is the auto transplantation of the removed parathyroid glands. There are various conditions that can indicate the need for the removal or transplant of the parathyroid glands. Hyperparathyroidism is a condition caused by overproduction of PTH, and can be divided into three types.
- Primary hyperparathyroidism happens when the normal mechanism of regulation by negative feedback of calcium is interrupted, or in other words the amount of blood calcium would ordinarily signal less production of PTH. Most of the time this is caused by adenomas, hyperplasia or carcinomas.
- Secondary hyperparathyroidism normally occurs in patients that suffer renal disease. Poor kidney function leads to a mineral disequilibrium that causes the glands hypertrophy in order to synthesize and release more PTH.
- Tertiary hyperparathyroidism develops when the hyperplastic gland of secondary hyperparathyroidism constantly releases PTH, independent of the regulation systems.
Another condition is hypercalcemia, which refers to a calcium level above 10.5 mg/dL. Consequences of this are heart rhythm diseases, and extra production of gastrin that causes peptic ulcers.
Parathyroid transplant is recommended if the parathyroid glands are removed accidentally during a thyroidectomy. They are autotransplanted to the nearby sternocleidomastoid muscle, or to the forearm so that another intervention would be less risky. A biopsy is recommended to be sure that the transplanted tissue is parathyroid and not a lymph node with metastatic disease. During parathyroid surgery if there is an adenoma the transplantation is not recommended; instead it is cryopreserved for research an if there is a recurrent hypoparathyroidism.
The surgery is indicated for all patients that are diagnosed with hyperparathyroidism with or without symptoms, especially in younger patients. In some cases the surgery works as therapy for nephrolithiasis, bone changes, and neuromuscular symptoms.
Hypocalcemia is common and can occur unnoticed with no symptoms or, in severe cases, can have dramatic symptoms and be life-threatening. Hypocalcemia can be parathyroid related or vitamin D related. Parathyroid related hypocalcemia includes post-surgical hypoparathyroidism, inherited hypoparathyroidism, pseudohypoparathyroidism, and pseudo-pseudohypoparathyroidism. Post-surgical hypoparathyroidism is the most common form, and can be temporary (due to suppression of tissue after removal of a malfunctioning gland) or permanent, if all parathyroid tissue has been removed. Inherited hypoparathyroidism is rare and is due to a mutation in the calcium sensing receptor. Pseudohypoparathyroidism is maternally inherited and is categorized by hypocalcemia and hyperphosphatemia. Finally, pseudo-pseudohypoparathyroidism is paternally inherited. Patients display normal parathyroid hormone action in the kidney, but exhibit altered parathyroid hormone action in the bone.
Vitamin D related hypocalcemia may be associated with a lack of vitamin D in the diet, a lack of sufficient UV exposure, or disturbances in renal function. Low vitamin D in the body can lead to a lack of calcium absorption and secondary hyperparathyroidism (hypocalcemia and raised parathyroid hormone). Symptoms of hypocalcemia include numbness in fingers and toes, muscle cramps, irritability, impaired mental capacity and muscle twitching.
Tertiary hyperparathyroidism is a state of excessive secretion of parathyroid hormone (PTH) after a long period of secondary hyperparathyroidism and resulting in a high blood calcium level. It reflects development of autonomous (unregulated) parathyroid function following a period of persistent parathyroid stimulation.
The basis of treatment is still prevention in chronic kidney failure, starting medication and dietary restrictions long before dialysis treatment is initiated. Cinacalcet has greatly reduced the number of patients who ultimately require surgery for secondary hyperparathyroidism; however, approximately 5% of patients do not respond to medical therapy.
When secondary hyperparathyroidism is corrected and the parathyroid glands remain hyperfunctioning, it becomes tertiary hyperparathyroidism. The treatment of choice is surgical removal of three and one half parathyroid glands.
As of today, no agreed-upon treatment of Dent's disease is known and no therapy has been formally accepted. Most treatment measures are supportive in nature:
- Thiazide diuretics (i.e. hydrochlorothiazide) have been used with success in reducing the calcium output in urine, but they are also known to cause hypokalemia.
- In rats with diabetes insipidus, thiazide diuretics inhibit the NaCl cotransporter in the renal distal convoluted tubule, leading indirectly to less water and solutes being delivered to the distal tubule. The impairment of Na transport in the distal convoluted tubule induces natriuresis and water loss, while increasing the reabsorption of calcium in this segment in a manner unrelated to sodium transport.
- Amiloride also increases distal tubular calcium reabsorption and has been used as a therapy for idiopathic hypercalciuria.
- A combination of 25 mg of chlorthalidone plus 5 mg of amiloride daily led to a substantial reduction in urine calcium in Dent's patients, but urine pH was "significantly higher in patients with Dent’s disease than in those with idiopathic hypercalciuria (P < 0.03), and supersaturation for uric acid was consequently lower (P < 0.03)."
- For patients with osteomalacia, vitamin D or derivatives have been employed, apparently with success.
- Some lab tests on mice with CLC-5-related tubular damage showed a high-citrate diet preserved kidney function and delayed progress of kidney disease.
Type 4 RTA is not actually a tubular disorder at all nor does it have a clinical syndrome similar to the other types of RTA described above. It was included in the classification of renal tubular acidoses as it is associated with a mild (normal anion gap) metabolic acidosis due to a "physiological" reduction in proximal tubular ammonium excretion (impaired ammoniagenesis), which is secondary to hypoaldosteronism, and results in a decrease in urine buffering capacity. Its cardinal feature is hyperkalemia, and measured urinary acidification is normal, hence it is often called hyperkalemic RTA or tubular hyperkalemia.
Causes include:
- Aldosterone deficiency (hypoaldosteronism): Primary vs. hyporeninemic (including diabetic nephropathy)
- Aldosterone resistance
1. Drugs: NSAIDs, ACE inhibitors and ARBs, Eplerenone, Spironolactone, Trimethoprim, Pentamidine
2. Pseudohypoaldosteronism