Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
In general, the indications for anticoagulation during pregnancy are the same as the general population. This includes (but is not limited to) a recent history of deep venous thrombosis (DVT) or pulmonary embolism, a metallic prosthetic heart valve, and atrial fibrillation in the setting of structural heart disease.
In addition to these indications, anticoagulation may be of benefit in individuals with lupus erythematosus, individuals who have a history of DVT or PE associated with a previous pregnancy, and even with individuals with a history of coagulation factor deficiencies and DVT not associated with a previous pregnancy.
In pregnant women with a history of recurrent miscarriage, anticoagulation seems to increase the live birth rate among those with antiphospholipid syndrome and perhaps those with congenital thrombophilia but not in those with unexplained recurrent miscarriage.
There are divergent views as to whether everyone with an unprovoked episode of thrombosis should be investigated for thrombophilia. Even those with a form of thrombophilia may not necessarily be at risk of further thrombosis, while recurrent thrombosis is more likely in those who have had previous thrombosis even in those who have no detectable thrombophilic abnormalities. Recurrent thromboembolism, or thrombosis in unusual sites (e.g. the hepatic vein in Budd-Chiari syndrome), is a generally accepted indication for screening. It is more likely to be cost-effective in people with a strong personal or family history of thrombosis. In contrast, the combination of thrombophilia with other risk factors may provide an indication for preventative treatment, which is why thrombophilia testing may be performed even in those who would not meet the strict criteria for these tests. Searching for a coagulation abnormality is not normally undertaken in patients in whom thrombosis has an obvious trigger. For example, if the thrombosis is due to immobilization after recent orthopedic surgery, it is regarded as "provoked" by the immobilization and the surgery and it is less likely that investigations will yield clinically important results.
When venous thromboembolism occurs when a patient is experiencing transient major risk factors such as prolonged immobility, surgery, or trauma, testing for thrombophilia is not appropriate because the outcome of the test would not change a patient's indicated treatment. In 2013, the American Society of Hematology, as part of recommendations in the Choosing Wisely campaign, cautioned against overuse of thrombophilia screening; false positive results of testing would lead to people inappropriately being labeled as having thrombophilia, and being treated with anticoagulants without clinical need
In the United Kingdom, professional guidelines give specific indications for thrombophilia testing. It is recommended that testing be done only after appropriate counseling, and hence the investigations are usually not performed at the time when thrombosis is diagnosed but at a later time. In particular situations, such as retinal vein thrombosis, testing is discouraged altogether because thrombophilia is not regarded as a major risk factor. In other rare conditions generally linked with hypercoagulability, such as cerebral venous thrombosis and portal vein thrombosis, there is insufficient data to state for certain whether thrombophilia screening is helpful, and decisions on thrombophilia screening in these conditions are therefore not regarded as evidence-based. If cost-effectiveness (quality-adjusted life years in return for expenditure) is taken as a guide, it is generally unclear whether thrombophilia investigations justify the often high cost, unless the testing is restricted to selected situations.
Recurrent miscarriage is an indication for thrombophilia screening, particularly antiphospholipid antibodies (anti-cardiolipin IgG and IgM, as well as lupus anticoagulant), factor V Leiden and prothrombin mutation, activated protein C resistance and a general assessment of coagulation through an investigation known as thromboelastography.
Women who are planning to use oral contraceptives do not benefit from routine screening for thrombophilias, as the absolute risk of thrombotic events is low. If either the woman or a first-degree relative has suffered from thrombosis, the risk of developing thrombosis is increased. Screening this selected group may be beneficial, but even when negative may still indicate residual risk. Professional guidelines therefore suggest that alternative forms of contraception be used rather than relying on screening.
Thrombophilia screening in people with arterial thrombosis is generally regarded unrewarding and is generally discouraged, except possibly for unusually young patients (especially when precipitated by smoking or use of estrogen-containing hormonal contraceptives) and those in whom revascularization, such as coronary arterial bypass, fails because of rapid occlusion of the graft.
Prevention of DVT and other types of venous thrombosis may be required if certain predisposing risk factors are present. One example from Sweden is based on the point system below, where points are summed to give the appropriate prophylaxis regimen.
After adding any risk factors together, a total of one point or less indicates no preventive action is needed. A total of two points indicates short-term prophylaxis, e.g. with LMWH, may be used in temporary risk factors, as well as administering prophylactic treatment seven days postpartum, starting a couple of hours after birth. A total of 3 points increases the necessary duration of "post partum" prophylaxis to six weeks.
A risk score of four points or higher means prophylaxis in the "ante partum" period is needed, as well as at least six weeks "post partum". A previous distal DVT indicates a minimum of 12 weeks (three months) of therapeutic anticoagulation therapy. A previous proximal DVT or pulmonary embolism requires a minimum of 26 weeks (6.5 months) of therapy If the therapy duration reaches delivery time, the remaining duration may be given after delivery, possibly extending the minimum of six weeks of "post partum" therapy. In a very high risk, high-dose "ante partum" prophylaxis should be continued at least 12 weeks after delivery.
Women with antiphospholipid syndrome should have an additional low-dose prophylactic treatment of aspirin.
Tests for thrombophilia include complete blood count (with examination of the blood film), prothrombin time, partial thromboplastin time, thrombodynamics test, thrombin time and reptilase time, lupus anticoagulant, anti-cardiolipin antibody, anti-β2 glycoprotein 1 antibody, activated protein C resistance, fibrinogen tests, factor V Leiden and prothrombin mutation, and basal homocysteine levels. Testing may be more or less extensive depending on clinical judgement and abnormalities detected on initial evaluation.
For hereditary cases, the patient must have at least 2 abnormal tests plus family history.
The risk of VTE is increased in pregnancy by about five times because of a more hypercoagulable state, a likely adaptation against fatal postpartum hemorrhage. Additionally, pregnant women with genetic risk factors are subject to a roughly three to 30 times increased risk for VTE. Preventative treatments for pregnancy-related VTE in hypercoagulable women were suggested by the ACCP. Homozygous carriers of factor V Leiden or prothrombin G20210A with a family history of VTE were suggested for antepartum LMWH and either LMWH or a vitamin K antagonist (VKA) for the six weeks following childbirth. Those with another thrombophilia and a family history but no previous VTE were suggested for watchful waiting during pregnancy and LMWH or—for those without protein C or S deficiency—a VKA. Homozygous carriers of factor V Leiden or prothrombin G20210A with no personal or family history of VTE were suggested for watchful waiting during pregnancy and LMWH or a VKA for six weeks after childbirth. Those with another thrombophilia but no family or personal history of VTE were suggested for watchful waiting only. Warfarin, a common VKA, can cause harm to the fetus and is not used for VTE prevention during pregnancy.
D-dimers are a fibrin degradation product, and an elevated level can result from plasmin dissolving a clot—or other conditions. Hospitalized patients often have elevated levels for multiple reasons. When individuals are at a high-probability of having DVT, diagnostic imaging is preferred to a D-dimer test. For those with a low or moderate probability of DVT, a D-dimer level might be obtained, which excludes a diagnosis if results are normal. An elevated level requires further investigation with diagnostic imaging to confirm or exclude the diagnosis.
For a suspected first leg DVT in a low-probability situation, the American College of Chest Physicians recommends testing either D-dimer levels with moderate or high sensitivity or compression ultrasound of the proximal veins. These options are suggested over whole-leg ultrasound, and D-dimer testing is the suggested preference overall. The UK National Institute for Health and Care Excellence (NICE) recommends D-dimer testing prior to proximal vein ultrasound.
For a suspected first leg DVT in a moderate-probability scenario, a high-sensitivity D-dimer is suggested as a recommended option over ultrasound imaging, with both whole-leg and compression ultrasound possible. The NICE guideline uses a two-point Wells score and does not refer to a moderate probability group.
If a small amount of bleeding is seen in early pregnancy a physician may request:
- A quantitative human chorionic gonadotropin (hCG) blood test to confirm the pregnancy or assist in diagnosing a potential miscarriage
- Transvaginal pelvic ultrasonography to confirm that the pregnancy is not outside of the uterus
- Blood type and Rh test to rule out hemolytic disease of the newborn
For bleeding seen in later pregnancy tests may include:
- Complete blood count (CBC) and blood type and screen
- Ultrasound to determine placental location
- Kleihauer-Betke (KB) test especially if there was maternal trauma
Pregnant patients may have bleeding from the reproductive tract due to trauma, including sexual trauma, neoplasm, most commonly cervical cancer, and hematologic disorders. Molar pregnancy (also called hydatiform mole) is a type of pregnancy where the sperm and the egg have joined within the uterus, but the result is a cyst resembling a grape-like cluster rather than an embryo. Bleeding can be an early sign of this tumor developing.
Suspicion of factor V Leiden being the cause for any thrombotic event should be considered in any Caucasian patient below the age of 45, or in any person with a family history of venous thrombosis.
There are a few different methods by which this condition can be diagnosed. Most laboratories screen 'at risk' patients with either a snake venom (e.g. dilute Russell's viper venom time) based test or an aPTT based test. In both methods, the time it takes for blood to clot is decreased in the presence of the factor V Leiden mutation. This is done by running two tests simultaneously; one test is run in the presence of activated protein C (APC) and the other, in the absence. A ratio is determined based on the two tests and the results signify to the laboratory whether APC is working or not.
There is also a genetic test that can be done for this disorder. The mutation (a 1691G→A substitution) removes a cleavage site of the restriction endonuclease "MnlI", so PCR, treatment with "MnlI", and then DNA electrophoresis will give a diagnosis. Other PCR based assays such as iPLEX can also identify zygosity and frequency of the variant.
The use of heparin following surgery is common if there are no issues with bleeding. Generally, a risk-benefit analysis is required, as all anticoagulants lead to an increased risk of bleeding. In people admitted to hospital, thrombosis is a major cause for complications and occasionally death. In the UK, for instance, the Parliamentary Health Select Committee heard in 2005 that the annual rate of death due to thrombosis was 25,000, with at least 50% of these being hospital-acquired. Hence "thromboprophylaxis" (prevention of thrombosis) is increasingly emphasized. In patients admitted for surgery, graded compression stockings are widely used, and in severe illness, prolonged immobility and in all orthopedic surgery, professional guidelines recommend low molecular weight heparin (LMWH) administration, mechanical calf compression or (if all else is contraindicated and the patient has recently suffered deep vein thrombosis) the insertion of a vena cava filter. In patients with medical rather than surgical illness, LMWH too is known to prevent thrombosis, and in the United Kingdom the Chief Medical Officer has issued guidance to the effect that preventative measures should be used in medical patients, in anticipation of formal guidelines.
In low-risk pregnancies, the association between cigarette smoking and a reduced risk of pre-eclampsia has been consistent and reproducible across epidemiologic studies. High-risk pregnancies (those with pregestational diabetes, chronic hypertension, history of pre-eclampsia in a previous pregnancy, or multifetal gestation) showed no significant protective effect. The reason for this discrepancy is not definitively known; research supports speculation that the underlying pathology increases the risk of preeclampsia to such a degree that any measurable reduction of risk due to smoking is masked. However, the damaging effects of smoking on overall health and pregnancy outcomes outweighs the benefits in decreasing the incidence of preeclampsia. It is recommended that smoking be stopped prior to, during and after pregnancy.
Studies suggest that marijuana use in the months prior to or during the early stages of pregnancy may interfere with normal placental development and consequently increase the risk of preeclampsia.
Taking aspirin is associated with a 1% to 5% reduction in pre-eclampsia and a 1% to 5% reduction in premature births in women at high risk. The World Health Organization recommends low-dose aspirin for the prevention of pre-eclampsia in women at high risk and recommends it be started before 20 weeks of pregnancy. The United States Preventive Services Task Force recommends a low-dose regimen for women at high risk beginning in the 12th week. Benefits are less if started after 16 weeks.
The effects of high blood pressure during pregnancy vary depending on the disorder and other factors. Preeclampsia does not in general increase a woman's risk for developing chronic hypertension or other heart-related problems. Women with normal blood pressure who develop preeclampsia after the 20th week of their first pregnancy, short-term complications--including increased blood pressure--usually go away within about 6 weeks after delivery.
Some women, however, may be more likely to develop high blood pressure or other heart disease later in life. More research is needed to determine the long-term health effects of hypertensive disorders in pregnancy and to develop better methods for identifying, diagnosing, and treating women at risk for these conditions.
Even though high blood pressure and related disorders during pregnancy can be serious, most women with high blood pressure and those who develop preeclampsia have successful pregnancies. Obtaining early and regular prenatal care is the most important thing you can do for you and your baby.
Transvaginal ultrasonography has become the primary method of assessment of the health of an early pregnancy.
In non-pregnant patients who are evaluated for recurrent pregnancy loss the following tests are usually performed.
Parental chromosome testing (karyogram) is generally recommended after 2 or 3 pregnancy losses. Blood tests for thrombophilia, ovarian function, thyroid function and diabetes are performed.
Studies have found that about 5 percent of Caucasians in North America have factor V Leiden. The condition is less common in Latin Americans and African-Americans and is extremely rare in people of Asian descent.
Up to 30 percent of patients who present with deep vein thrombosis (DVT) or pulmonary embolism have this condition. The risk of developing a clot in a blood vessel depends on whether a person inherits one or two copies of the factor V Leiden mutation. Inheriting one copy of the mutation from a parent (heterozygous) increases by fourfold to eightfold the chance of developing a clot. People who inherit two copies of the mutation (homozygous), one from each parent, may have up to 80 times the usual risk of developing this type of blood clot. Considering that the risk of developing an abnormal blood clot averages about 1 in 1,000 per year in the general population, the presence of one copy of the factor V Leiden mutation increases that risk to between 4 in 1,000 to 8 in 1,000. Having two copies of the mutation may raise the risk as high as 80 in 1,000. It is unclear whether these individuals are at increased risk for "recurrent" venous thrombosis. While only 1 percent of people with factor V Leiden have two copies of the defective gene, these homozygous individuals have a more severe clinical condition. The presence of acquired risk factors for venous thrombosis—including smoking, use of estrogen-containing (combined) forms of hormonal contraception, and recent surgery—further increase the chance that an individual with the factor V Leiden mutation will develop DVT.
Women with factor V Leiden have a substantially increased risk of clotting in pregnancy (and on estrogen-containing birth control pills or hormone replacement) in the form of deep vein thrombosis and pulmonary embolism. They also may have a small increased risk of preeclampsia, may have a small increased risk of low birth weight babies, may have a small increased risk of miscarriage and stillbirth due to either clotting in the placenta, umbilical cord, or the fetus (fetal clotting may depend on whether the baby has inherited the gene) or influences the clotting system may have on placental development. Note that many of these women go through one or more pregnancies with no difficulties, while others may repeatedly have pregnancy complications, and still others may develop clots within weeks of becoming pregnant.
There are no laboratory tests used to diagnose RVT.
Observing the patient's symptoms, medical history and imaging remain the fundamental source for diagnosing RVT. Imaging is used to detect the presence of a blood clot. In an abnormal kidney with RVT, a blood clot is present in the renal vein. In cases where the renal vein is suddenly and/or fully blocked, the kidneys will enlarge, reaching its maximum size within a week. An ultrasound imaging can be used to observe and track the size of the kidneys in RVT patients. Ultrasound is not efficient for use in detecting blood flow in the renal veins and artery. Instead a color doppler ultrasound may be used to detect renal blood flow. It is most commonly used to detect RVT in patients who have undergone renal transplantation. CT angiography is currently the top choice in diagnosing RVT. It is non-invasive, relatively cheap and fast with high accuracy. CT scanning can be used to detect renal enlargement, renal tumors, blood flow and other renal pathologies. An alternative is magnetic resonance angiography or MRA. It is non-invasive, fast and avoids radiation (unlike a CT scan) but it is relatively expensive. MRA produces detailed images of the renal blood flow, vesicle walls, the kidneys and any surrounding tissue. An inferior venocavography with selective venography can be used to rule out the diagnoses of RVT.
There are various neuroimaging investigations that may detect cerebral sinus thrombosis. Cerebral edema and venous infarction may be apparent on any modality, but for the detection of the thrombus itself, the most commonly used tests are computed tomography (CT) and magnetic resonance imaging (MRI), both using various types of radiocontrast to perform a venogram and visualise the veins around the brain.
Computed tomography, with radiocontrast in the venous phase ("CT venography" or CTV), has a detection rate that in some regards exceeds that of MRI. The test involves injection into a vein (usually in the arm) of a radioopaque substance, and time is allowed for the bloodstream to carry it to the cerebral veins - at which point the scan is performed. It has a sensitivity of 75-100% (it detects 75-100% of all clots present), and a specificity of 81-100% (it would be incorrectly positive in 0-19%). In the first two weeks, the "empty delta sign" may be observed (in later stages, this sign may disappear).
Magnetic resonance venography employs the same principles, but uses MRI as a scanning modality. MRI has the advantage of being better at detecting damage to the brain itself as a result of the increased pressure on the obstructed veins, but it is not readily available in many hospitals and the interpretation may be difficult.
Cerebral angiography may demonstrate smaller clots than CT or MRI, and obstructed veins may give the "corkscrew appearance". This, however, requires puncture of the femoral artery with a sheath and advancing a thin tube through the blood vessels to the brain where radiocontrast is injected before X-ray images are obtained. It is therefore only performed if all other tests give unclear results or when other treatments may be administered during the same procedure.
Most women with a PUL are followed up with serum hCG measurements and repeat TVS examinations until a final diagnosis is confirmed. Low-risk cases of PUL that appear to be failing pregnancies may be followed up with a urinary pregnancy test after 2 weeks and get subsequent telephone advice. Low-risk cases of PUL that are likely intrauterine pregnancies may have another TVS in 2 weeks to access viability. High-risk cases of PUL require further assessment, either with a TVS within 48 h or additional hCG measurement.
The treatment for thrombosis depends on whether it is in a vein or an artery, the impact on the person, and the risk of complications from treatment.
Previa can be confirmed with an ultrasound. Transvaginal ultrasound has superior accuracy as compared to transabdominal one, thus allowing measurement of distance between placenta and cervical os. This has rendered traditional classification of placenta previa obsolete.
False positives may be due to following reasons:
- Overfilled bladder compressing lower uterine segment
- Myometrial contraction simulating placental tissue in abnormally low location
- Early pregnancy low position, which in third trimester may be entirely normal due to differential growth of the uterus.
In such cases, repeat scanning is done after an interval of 15–30 minutes.
In parts of the world where ultrasound is unavailable, it is not uncommon to confirm the diagnosis with an examination in the surgical theatre. The proper timing of an examination in theatre is important. If the woman is not bleeding severely she can be managed non-operatively until the 36th week. By this time the baby's chance of survival is as good as at full term.
History may reveal antepartum hemorrhage. Abdominal examination usually finds the uterus non-tender, soft and relaxed. Leopold's Maneuvers may find the fetus in an oblique or breech position or lying transverse as a result of the abnormal position of the placenta. Malpresentation is found in about 35% cases. Vaginal examination is avoided in known cases of placenta previa.
A laparoscopy or laparotomy can also be performed to visually confirm an ectopic pregnancy. This is generally reserved for women presenting with signs of an acute abdomen and/or hypovolemic shock. Often if a tubal abortion or tubal rupture has occurred, it is difficult to find the pregnancy tissue. A laparoscopy in very early ectopic pregnancy rarely shows a normal looking fallopian tube.
Culdocentesis, in which fluid is retrieved from the space separating the vagina and rectum, is a less commonly performed test that may be used to look for internal bleeding. In this test, a needle is inserted into the space at the very top of the vagina, behind the uterus and in front of the rectum. Any blood or fluid found may have been derived from a ruptured ectopic pregnancy.
Progesterone levels of less than 20 nmol/l have a high predictive value for failing pregnancies, whilst levels over 25 nmol/l are likely to predict viable pregnancies, and levels over 60 nmol/l are strongly so. This may help in identifying failing PULs that are at low risk and thereby needing less follow-up. Inhibin A may also be useful for predicting spontaneous resolution of PUL, but is not as good as progesterone for this purpose.
In addition, there are various mathematical models, such as logistic regression models and Bayesian networks, for the prediction of PUL outcome based on multiple parameters. Mathematical models also aim to identify PULs that are "low risk", that is, failing PULs and IUPs.
Dilation and curettage is sometimes used to diagnose pregnancy location with the aim of differentiating between an EP and a non-viable IUP in situations where a viable IUP can be ruled out. Specific indications for this procedure include either of the following:
- no visible IUP on transvaginal ultrasonography with a serum hCG of more than 2000 IU/ml
- an abnormal rise in hCG level. A rise of 35% over 48 hours is proposed as the minimal rise consistent with a viable intrauterine pregnancy.
- an abnormal fall in hCG level, such as defined as one of less than 20% in 2 days
A 2004 study suggested that the D-dimer blood test, already in use for the diagnosis of other forms of thrombosis, was abnormal (above 500 μg/l) in 34 out of 35 patients with cerebral sinus thrombosis, giving it a sensitivity of 97.1%, a negative predictive value of 99.6%, a specificity of 91.2%, and a positive predictive value of 55.7%. Furthermore, the level of the D-dimer correlated with the extent of the thrombosis. A subsequent study, however, showed that 10% of patients with confirmed thrombosis had a normal D-dimer, and in those who had presented with only a headache 26% had a normal D-dimer. The study concludes that D-dimer is not useful in the situations where it would make the most difference, namely in lower probability cases.
Blood pressure control can be accomplished before pregnancy. Medications can control blood pressure. Certain medications may not be ideal for blood pressure control during pregnancy such as angiotensin-converting enzyme (ACE) inhibitors and Angiotensin II (AII) receptor antagonists. Controlling weight gain during pregnancy can help reduce the risk of hypertension during pregnancy.
It is the goal of evolutionary medicine to find treatments for diseases that are informed by the evolutionary history of a disease. It has been suggested that gestational hypertension is linked to insulin resistance during pregnancy. Both the increase in blood sugar that can lead to gestational diabetes and the increase in blood pressure that can lead to gestational hypertension are mechanisms that mean to optimize the amount of nutrients that can be passed from maternal tissue to fetal tissue. It has been suggested that techniques used to combat insulin insensitivity might also prove beneficial to those suffering from gestational hypertension. Measures to avoid insulin resistance include avoiding obesity before pregnancy, minimizing weight gain during pregnancy, eating foods with low glycemic indexes, and exercising.