Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Biochemical tests used in the identification of infectious agents include the detection of metabolic or enzymatic products characteristic of a particular infectious agent. Since bacteria ferment carbohydrates in patterns characteristic of their genus and species, the detection of fermentation products is commonly used in bacterial identification. Acids, alcohols and gases are usually detected in these tests when bacteria are grown in selective liquid or solid media.
The isolation of enzymes from infected tissue can also provide the basis of a biochemical diagnosis of an infectious disease. For example, humans can make neither RNA replicases nor reverse transcriptase, and the presence of these enzymes are characteristic of specific types of viral infections. The ability of the viral protein hemagglutinin to bind red blood cells together into a detectable matrix may also be characterized as a biochemical test for viral infection, although strictly speaking hemagglutinin is not an "enzyme" and has no metabolic function.
Serological methods are highly sensitive, specific and often extremely rapid tests used to identify microorganisms. These tests are based upon the ability of an antibody to bind specifically to an antigen. The antigen, usually a protein or carbohydrate made by an infectious agent, is bound by the antibody. This binding then sets off a chain of events that can be visibly obvious in various ways, dependent upon the test. For example, "Strep throat" is often diagnosed within minutes, and is based on the appearance of antigens made by the causative agent, "S. pyogenes", that is retrieved from a patients throat with a cotton swab. Serological tests, if available, are usually the preferred route of identification, however the tests are costly to develop and the reagents used in the test often require refrigeration. Some serological methods are extremely costly, although when commonly used, such as with the "strep test", they can be inexpensive.
Complex serological techniques have been developed into what are known as Immunoassays. Immunoassays can use the basic antibody – antigen binding as the basis to produce an electro-magnetic or particle radiation signal, which can be detected by some form of instrumentation. Signal of unknowns can be compared to that of standards allowing quantitation of the target antigen. To aid in the diagnosis of infectious diseases, immunoassays can detect or measure antigens from either infectious agents or proteins generated by an infected organism in response to a foreign agent. For example, immunoassay A may detect the presence of a surface protein from a virus particle. Immunoassay B on the other hand may detect or measure antibodies produced by an organism's immune system that are made to neutralize and allow the destruction of the virus.
Instrumentation can be used to read extremely small signals created by secondary reactions linked to the antibody – antigen binding. Instrumentation can control sampling, reagent use, reaction times, signal detection, calculation of results, and data management to yield a cost effective automated process for diagnosis of infectious disease.
Electron microscopy can reveal the bullet-shaped rhabdovirus, but is not
adequate for definitive diagnosis.
The Manual or Diagnostic for Aquatic Animals, 2006, is the standard
reference for definitive tests. In most cases, cell culturization
is recommended for surveillance, with antibody tests and reverse transcription
polymerase chain reaction (RT-PCR) and genetic sequencing and comparison
for definitive confirmation and genotype classification.
Virus neutralisation is another important method of diagnosis, especially for carrier fish.
Another principal tool in the diagnosis of infectious disease is microscopy. Virtually all of the culture techniques discussed above rely, at some point, on microscopic examination for definitive identification of the infectious agent. Microscopy may be carried out with simple instruments, such as the compound light microscope, or with instruments as complex as an electron microscope. Samples obtained from patients may be viewed directly under the light microscope, and can often rapidly lead to identification. Microscopy is often also used in conjunction with biochemical staining techniques, and can be made exquisitely specific when used in combination with antibody based techniques. For example, the use of antibodies made artificially fluorescent (fluorescently labeled antibodies) can be directed to bind to and identify a specific antigens present on a pathogen. A fluorescence microscope is then used to detect fluorescently labeled antibodies bound to internalized antigens within clinical samples or cultured cells. This technique is especially useful in the diagnosis of viral diseases, where the light microscope is incapable of identifying a virus directly.
Other microscopic procedures may also aid in identifying infectious agents. Almost all cells readily stain with a number of basic dyes due to the electrostatic attraction between negatively charged cellular molecules and the positive charge on the dye. A cell is normally transparent under a microscope, and using a stain increases the contrast of a cell with its background. Staining a cell with a dye such as Giemsa stain or crystal violet allows a microscopist to describe its size, shape, internal and external components and its associations with other cells. The response of bacteria to different staining procedures is used in the taxonomic classification of microbes as well. Two methods, the Gram stain and the acid-fast stain, are the standard approaches used to classify bacteria and to diagnosis of disease. The Gram stain identifies the bacterial groups Firmicutes and Actinobacteria, both of which contain many significant human pathogens. The acid-fast staining procedure identifies the Actinobacterial genera "Mycobacterium" and "Nocardia".
The CDC states that PCR testing from a single blood draw is not sufficiently sensitive for "B." "henselae" testing, and can result in high false negative rates due to a small sample volume and levels below the limit of molecular detection.
"Bartonella" spp. are fastidious, slow-growing bacteria that are difficult to grow using traditional solid agar plate culture methods due to complex nutritional requirements and potentially a low number of circulating bacteria. This conventional method of culturing "Bartonella" spp. from blood inoculates plated directly onto solid agar plates requires an extended incubation period of 21 days due to the slow growth rate.
As in humans, the sensitivity of testing methods for rodents contributes to the accuracy of diagnosis. LCMV is typically identified through serology. However, in an endemically infected colony, more practical methods include MAP (mouse antibody production) and PCR testing. Another means of diagnosis is introducing a known naïve adult mouse to the suspect rodent colony. The introduced mouse will seroconvert, allowing use of immunofluorescence antibody (IFA), MFIA or ELISA to detect antibodies.
Thoroughly cleaning boats, trailers, nets and other equipment when traveling between different lakes and streams also
helps. The only EPA-approved disinfectant proven effective against VHS is Virkon AQUATIC (made by Dupont). Chlorine bleach kills the VHS virus, but in concentrations that are much too caustic for ordinary use. Disinfecting stations can be found at various inland lake boat launches in the Great Lakes region.
"Bartonella" growth rates improve when cultured in an enrichment inoculation step in a liquid insect-based medium such as "Bartonella" α-Proteobacteria Growth Medium (BAPGM) or Schneider’s Drosophila-based insect powder medium. Several studies have optimized the growing conditions of "Bartonella" spp. cultures in these liquid media, with no change in bacterial protein expressions or host interactions "in vitro". Insect-based liquid media supports the growth and co-culturing of at least seven "Bartonella" species, reduces bacterial culturing time and facilitates PCR detection and isolation of "Bartonella" spp. from animal and patient samples. Research shows that DNA may be detected following direct extraction from blood samples and become negative following enrichment culture, thus PCR is recommended after direct sample extraction and also following incubation in enrichment culture. Several studies have successfully optimized sensitivity and specificity by using PCR amplification (pre-enrichment PCR) and enrichment culturing of blood draw samples, followed by PCR (post-enrichment PCR) and DNA sequence identification.
Diagnosis of BMCF depends on a combination of history and symptoms, histopathology and detection in the blood or tissues of viral antibodies by ELISA or of viral DNA by PCR. The characteristic histologic lesions of MCF are lymphocytic arteritis with necrosis of the blood vessel wall and the presence of large T lymphocytes mixed with other cells. The similarity of MCF clinical signs to other enteric diseases, for example blue tongue, mucosal disease and foot and mouth make laboratory diagnosis of MCF important. The world organisation for animal health recognises histopathology as the definitive diagnostic test, but laboratories have adopted other approaches with recent developments in molecular virology. No vaccine has as yet been developed.
Host tropism is the infection specificity of certain pathogens to particular hosts and host tissues. This type of tropism explains why most pathogens are only capable of infecting a limited range of host organisms.
Researchers can classify pathogenic organisms by the range of species and cell types that they exhibit host tropism for. For instance, pathogens that are able to infect a wide range of hosts and tissues are said to be amphotropic. Ecotropic pathogens, on the other hand, are only capable of infecting a narrow range of hosts and host tissue. Knowledge of a pathogen's host specificity allows professionals in the research and medical industries to model pathogenesis and develop vaccines, medication, and preventative measures to fight against infection. Methods such as cell engineering, direct engineering and assisted evolution of host-adapted pathogens, and genome-wide genetic screens are currently being used by researchers to better understand the host range of a variety of different pathogenic organisms.
Immunosuppressive therapy has been effective in halting the disease for laboratory animals.
If someone is suspected of having polioencephalitis a sample of throat secretions, stool or cerebrospinal fluid is checked for the virus. Blood tests can be done to detect antibodies against viral antigens and foreign proteins. Virus isolation is the most sensitive method and it is most likely to be isolated from stool samples. Once isolated, RT-PCR is used to differentiate naturally occurring strains from vaccine-like strains.
The virus is most often spread by person to person contact with the stool or saliva of the infected person. Two types of vaccines have been developed to prevent the occurrence and spread of the poliomyelitis virus. The first is an inactivated, or killed, form of the virus and the second is an attenuated, or weakened, form of the virus. The development of vaccines has successfully eliminated the disease from the United States. There are continued vaccination efforts in the U.S. to maintain this success rate as this disease still occurs in some areas of the world.
Viral entry is the earliest stage of infection in the viral life cycle, as the virus comes into contact with the host cell and introduces viral material into the cell. The major steps involved in viral entry are shown below. Despite the variation among viruses, there are several shared generalities concerning viral entry.
Recent work has been done by virologists to learn more about the interference in infection of host cells and how DI genomes could potentially work as antiviral agents. The Dimmock & Easton, 2014 article explains that pre-clinical work is being done to test their effectiveness against influenza viruses. DI-RNAs have also been found to aid in the infection of fungi via viruses of the family "Partitiviridae" for the first time, which makes room for more interdisciplinary work.
Fumagillin has been used in the treatment.
Another agent used is albendazole.
In microbiology, coinfection is the simultaneous infection of a host by multiple pathogen species. In virology, coinfection includes simultaneous infection of a single cell by two or more virus particles. An example is the coinfection of liver cells with Hepatitis B virus and Hepatitis D virus, which can arise incrementally by initial infection followed by superinfection.
Global prevalence or incidence of coinfection among humans is unknown, but it is thought to be commonplace, sometimes more common than single infection. Coinfection with helminths affects around 800 million people worldwide.
Coinfection is of particular human health importance because pathogen species can interact within the host. The net effect of coinfection on human health is thought to be negative. Interactions can have either positive or negative effects on other parasites. Under positive parasite interactions, disease transmission and progression are enhanced and this is also known as syndemism. Negative parasite interactions include microbial interference when one bacterial species suppresses the virulence or colonisation of other bacteria, such as "Pseudomonas aeruginosa" suppressing pathogenic "Staphylococcus aureus" colony formation. The general patterns of ecological interactions between parasite species are unknown, even among common coinfections such as those between sexually transmitted infections. However, network analysis of a food web of coinfection in humans suggests that there is greater potential for interactions via shared food sources than via the immune system.
A globally common coinfection involves tuberculosis and HIV. In some countries, up to 80% of tuberculosis patients are also HIV-positive. The potential for dynamics of these two infectious diseases to be linked has been known for decades. Other common examples of coinfections are AIDS, which involves coinfection of end-stage HIV with opportunistic parasites and polymicrobial infections like Lyme disease with other diseases.
Yersinia pseudotuberculosis is a Gram-negative bacterium that causes Far East scarlet-like fever in humans, who occasionally get infected zoonotically, most often through the food-borne route. Animals are also infected by "Y. pseudotuberculosis". The bacterium is urease positive.
A combination of clinical signs, symptoms, and laboratory tests can confirm the likelihood of having CTF. Some tests include complement fixation to Colorado tick virus, immunofluorescence for Colorado tick fever, and some other common laboratory findings suggestive of CTF, including leucopenia, thrombocytopenia, and mildly elevated liver enzyme levels.
Detection of viral antibodies on red blood cells is possible.
To avoid tick bites and infection, experts advise:
- Avoid tick-infested areas, especially during the warmer months.
- Wear light-colored clothing so ticks can be easily seen. Wear a long sleeved shirt, hat, long pants, and tuck pant legs into socks.
- Walk in the center of trails to avoid overhanging grass and brush.
- Clothing and body parts should be checked every few hours for ticks when spending time outdoors in tick-infested areas. Ticks are most often found on the thigh, arms, underarms, and legs. Ticks can be very small (no bigger than a pinhead). Look carefully for new "freckles".
- The use of insect repellents containing DEET on skin or permethrin on clothing can be effective. Follow the directions on the container and wash off repellents when going indoors.
- Remove attached ticks immediately.
Contracting the CTF virus is thought to provide long-lasting immunity against reinfection. However, it is always wise to be on the safe side and try to prevent tick bites.
Because "B. suis" is facultative and intracellular, and is able to adapt to environmental conditions in the macrophage, treatment failure and relapse rates are high. The only effective way to control and eradicate zoonosis is by vaccination of all susceptible hosts and elmination of infected animals. The "Brucella abortus" (rough LPS "Brucella") vaccine, developed for bovine brucellosis and licensed by the USDA Animal Plant Health Inspection Service, has shown protection for some swine and is also effective against "B. suis" infection, but currently no approved vaccine for swine brucellosis is available.
The most frequent clinical sign following "B. suis" infection is abortion in pregnant females, reduced milk production, and infertility. Cattle can also be transiently infected when they share pasture or facilities with infected pigs, and "B. suis" can be transmitted by cow’s milk.
Swine also develop orchitis (swelling of the testicles), lameness (movement disability), hind limb paralysis, or spondylitis (inflammation in joints).
In animals, "Y. pseudotuberculosis" can cause tuberculosis-like symptoms, including localized tissue necrosis and granulomas in the spleen, liver, and lymph nodes.
In humans, symptoms of Far East scarlet-like fever are similar to those of infection with "Yersinia enterocolitica" (fever and right-sided abdominal pain), except that the diarrheal component is often absent, which sometimes makes the resulting condition difficult to diagnose. "Y. pseudotuberculosis" infections can mimic appendicitis, especially in children and younger adults, and, in rare cases, the disease may cause skin complaints (erythema nodosum), joint stiffness and pain (reactive arthritis), or spread of bacteria to the blood (bacteremia).
Far East scarlet-like fever usually becomes apparent five to 10 days after exposure and typically lasts one to three weeks without treatment. In complex cases or those involving immunocompromised patients, antibiotics may be necessary for resolution; ampicillin, aminoglycosides, tetracycline, chloramphenicol, or a cephalosporin may all be effective.
The recently described syndrome "Izumi-fever" has been linked to infection with "Y. pseudotuberculosis".
The symptoms of fever and abdominal pain mimicking appendicitis (actually from mesenteric lymphadenitis) associated with "Y. pseudotuberculosis" infection are not typical of the diarrhea and vomiting from classical food poisoning incidents. Although "Y. pseudotuberculosis" is usually only able to colonize hosts by peripheral routes and cause serious disease in immunocompromised individuals, if this bacterium gains access to the blood stream, it has an LD comparable to "Y. pestis" at only 10 CFU.
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.
In virology, defective interfering particles (DIPs), also known as defective interfering viruses, are spontaneously generated virus mutants in which a critical portion of the particle's genome has been lost due to defective replication. DIPs are derived from and associated with their parent virus, and particles are classed as DIPs if they are rendered non-infectious due to at least one essential gene of the virus being lost or severely damaged as a result of the defection. A DIP can usually still penetrate host cells, but requires another fully functional virus particle (the 'helper' virus) to co-infect a cell with it, in order to provide the lost factors. The existence of DIPs has been known about for decades, and they can occur within nearly every class of both DNA and RNA viruses.
A subclinical infection (sometimes called a preinfection) is an infection that, being , is nearly or completely asymptomatic (no signs or symptoms). A subclinically infected person is thus an asymptomatic carrier of a microbe, intestinal parasite, or virus that usually is a pathogen causing illness, at least in some individuals. Many pathogens spread by being silently carried in this way by some of their host population. Such infections occur both in humans and nonhuman animals. An example of an asymptomatic infection is a mild common cold that is not noticed by the infected individual. Since subclinical infections often occur without eventual overt sign, their existence is only identified by microbiological culture or DNA techniques such as polymerase chain reaction.