Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In general, the Duke criteria should be fulfilled in order to establish the diagnosis of endocarditis. The blood tests C reactive protein (CRP) and procalcitonin have not been found to be particularly useful in helping make or rule out the diagnosis.
As the Duke criteria rely heavily on the results of echocardiography, research has addressed when to order an echocardiogram by using signs and symptoms to predict occult endocarditis among patients with intravenous drug abuse and among non drug-abusing patients. Unfortunately, this research is over 20 years old and it is possible that changes in the epidemiology of endocarditis and bacteria such as staphylococci make the following estimates incorrect.
The transthoracic echocardiogram has a sensitivity and specificity of approximately 65% and 95% if the echocardiographer believes there is 'probable' or 'almost certain' evidence of endocarditis.
It is not practical to test or decontaminate most sites that may be contaminated with "H. capsulatum", but the following sources list environments where histoplasmosis is common, and precautions to reduce a person's risk of exposure, in the three parts of the world where the disease is prevalent. Precautions common to all geographical locations would be to avoid accumulations of bird or bat droppings.
The US National Institute for Occupational Safety and Health (NIOSH) provides information on work practices and personal protective equipment that may reduce the risk of infection. This document is available in English and Spanish.
Authors at the University of Nigeria have published a review which includes information on locations in which histoplasmosis has been found in Africa (in chicken runs, bats and the caves bats infest, and in soil), and a thorough reference list including English, French, and Spanish language references.
Diagnosis and the imaging (and laboratory) studies to be ordered largely depend on the patient history, signs and symptoms. If a persistent sore throat with signs of sepsis are found, physicians are cautioned to screen for Lemierre's syndrome.
Laboratory investigations reveal signs of a bacterial infection with elevated C-reactive protein, erythrocyte sedimentation rate and white blood cells (notably neutrophils). Platelet count can be low or high. Liver and kidney function tests are often abnormal.
Thrombosis of the internal jugular vein can be displayed with sonography. Thrombi that have developed recently have low echogenicity or echogenicity similar to the flowing blood, and in such cases pressure with the ultrasound probe show a non-compressible jugular vein - a sure sign of thrombosis. Also color or power Doppler ultrasound identify a low echogenicity blood clot. A CT scan or an MRI scan is more sensitive in displaying the thrombus of the intra-thoracic retrosternal veins, but are rarely needed.
Chest X-ray and chest CT may show pleural effusion, nodules, infiltrates, abscesses and cavitations.
Bacterial cultures taken from the blood, joint aspirates or other sites can identify the causative agent of the disease.
Other illnesses that can be included in the differential diagnosis are:
- Q fever
- Tuberculosis
- Pneumonia
Clinically, there is a wide spectrum of disease manifestation, making diagnosis somewhat difficult. More severe forms include: (1) the chronic pulmonary form, often occurring in the presence of underlying pulmonary disease; and (2) a disseminated form, which is characterized by the progressive spread of infection to extra-pulmonary sites. Oral manifestations have been reported as the main complaint of the disseminated forms, leading the patient to seek treatment, whereas pulmonary symptoms in disseminated disease may be mild or even misinterpreted as flu. Histoplasmosis can be diagnosed by samples containing the fungus taken from sputum (via bronchoalveolar lavage), blood, or infected organs. It can also be diagnosed by detection of antigens in blood or urine samples by ELISA or PCR. Antigens can cross-react with antigens of African histoplasmosis (caused by Histoplasma duboisii), blastomycosis, coccidioidomycosis, paracoccidioidomycosis, and Penicillium marneffei infection. Histoplasmosis can also be diagnosed by a test for antibodies against "Histoplasma" in the blood. "Histoplasma" skin tests indicate whether a person has been exposed, but do not indicate whether they have the disease. Formal histoplasmosis diagnoses are often confirmed only by culturing the fungus directly. Sabouraud agar is one type of agar growth media on which the fungus can be cultured. Cutaneous manifestations of disseminated disease are diverse and often present as a nondescript rash with systemic complaints. Diagnosis is best established by urine antigen testing, as blood cultures may take up to 6 weeks for diagnostic growth to occur and serum antigen testing often comes back with a false negative before 4 weeks of disseminated infection.
The diagnosis can be confirmed by the characteristic appearance of the chest x-ray, which shows widespread pulmonary infiltrates, and an arterial oxygen level (PaO) that is strikingly lower than would be expected from symptoms. Gallium 67 scans are also useful in the diagnosis. They are abnormal in approximately 90% of cases and are often positive before the chest x-ray becomes abnormal. The diagnosis can be definitively confirmed by histological identification of the causative organism in sputum or bronchio-alveolar lavage (lung rinse). Staining with toluidine blue, silver stain, periodic-acid schiff stain, or an immunofluorescence assay will show the characteristic cysts. The cysts resemble crushed ping-pong balls and are present in aggregates of 2 to 8 (and not to be confused with "Histoplasma" or "Cryptococcus", which typically do not form aggregates of spores or cells). A lung biopsy would show thickened alveolar septa with fluffy eosinophilic exudate in the alveoli. Both the thickened septa and the fluffy exudate contribute to dysfunctional diffusion capacity which is characteristic of this pneumonia.
"Pneumocystis" infection can also be diagnosed by immunofluorescent or histochemical staining of the specimen, and more recently by molecular analysis of polymerase chain reaction products comparing DNA samples. Notably, simple molecular detection of "Pneumocystis jirovecii" in lung fluids does not mean that a person has "Pneumocystis" pneumonia or infection by HIV. The fungus appears to be present in healthy individuals in the general population.
The diagnosis of constrictive pericarditis is often difficult to make. In particular, restrictive cardiomyopathy has many similar clinical features to constrictive pericarditis, and differentiating them in a particular individual is often a diagnostic dilemma.
- Chest X-Ray - pericardial calcification (common but not specific), pleural effusions are common findings.
- Echocardiography - the principal echographic finding is changes in cardiac chamber volume.
- CT and MRI - useful in select cases.
- BNP blood test - tests for the existence of the cardiac hormone brain natriuretic peptide, which is only present in RCMP but not in CP
- Conventional cardiac catheterization
- Physical examination -can reveal clinical features including Kussmaul's sign and a pericardial knock.
Tuberculous pericarditis is a form of pericarditis.
Pericarditis caused by tuberculosis is difficult to diagnose, because definitive diagnosis requires culturing "Mycobacterium tuberculosis" from aspirated pericardial fluid or pericardial , which requires high technical skill and is often not diagnostic (the yield from culture is low even with optimum specimens). The Tygerberg scoring system helps the clinician to decide whether pericarditis is due to tuberculosis or whether it is due to another cause: night sweats (1 point), weight loss (1 point), fever (2 point), serum globulin > 40g/l (3 points), blood total leucocyte count <10 x 10/l (3 points); a total score of 6 or more is highly suggestive of tuberculous pericarditis. Pericardial fluid with an interferon-γ level greater than 50/ml is highly specific for tuberculous pericarditis.
There are no randomized trials which evaluate the length of anti-tuberculosis treatment required for tuberculous pericarditis. There is a small but not conclusive benefit for treatment with a schedule of steroids with anti-tuberculosis drugs. Open surgical drainage of fluid though effective in preventing cardiac tamponade was associated with more deaths.
If suspected, fungal meningitis is diagnosed by testing blood and CSF samples for pathogens. Identifying the specific pathogen is necessary to determine the proper course of treatment and the prognosis. Measurement of opening pressure, cell count with differential, glucose and protein concentrations, Gram's stain, India ink, and culture tests should be preformed on CSF samples when fungal meningitis is suspected.
For acute pericarditis to formally be diagnosed, two or more of the following criteria must be present: chest pain consistent with a diagnosis of acute pericarditis (sharp chest pain worsened by breathing in or a cough), a pericardial friction rub, a pericardial effusion, and changes on electrocardiogram (ECG) consistent with acute pericarditis.
A complete blood count may show an elevated white count and a serum C-reactive protein may be elevated. Acute pericarditis is associated with a modest increase in serum creatine kinase MB (CK-MB). and cardiac troponin I (cTnI), both of which are also markers for injury to the muscular layer of the heart. Therefore, it is imperative to also rule out acute myocardial infarction in the face of these biomarkers. The elevation of these substances may occur when inflammation of the heart's muscular layer in addition to acute pericarditis. Also, ST elevation on EKG (see below) is more common in those patients with a cTnI > 1.5 µg/L. Coronary angiography in those patients should indicate normal vascular perfusion. Troponin levels increase in 35-50% of people with pericarditis.
Electrocardiogram (ECG) changes in acute pericarditis mainly indicates inflammation of the epicardium (the layer directly surrounding the heart), since the fibrous pericardium is electrically inert. For example, in uremia, there is no inflammation in the epicardium, only fibrin deposition, and therefore the EKG in uremic pericarditis will be normal. Typical EKG changes in acute pericarditis includes
- stage 1 -- diffuse, positive, ST elevations with reciprocal ST depression in aVR and V1. Elevation of PR segment in aVR and depression of PR in other leads especially left heart V5, V6 leads indicates atrial injury.
- stage 2 -- normalization of ST and PR deviations
- stage 3 -- diffuse T wave inversions (may not be present in all patients)
- stage 4 -- EKG becomes normal OR T waves may be indefinitely inverted
The two most common clinical conditions where ECG findings may mimic pericarditis are acute myocardial infarction (AMI) and generalized early repolarization. As opposed to pericarditis, AMI usually causes localized convex ST-elevation usually associated with reciprocal ST-depression which may also be frequently accompanied by Q-waves, T-wave inversions (while ST is still elevated unlike pericarditis), arrhythmias and conduction abnormalities. In AMI, PR-depressions are rarely present. Early repolarization usually occurs in young males (age <40 years) and ECG changes are characterized by terminal R-S slurring, temporal stability of ST-deviations and J-height/ T-amplitude ratio in V5 and V6 of <25% as opposed to pericarditis where terminal R-S slurring is very uncommon and J-height/ T-amplitude ratio is ≥ 25%. Very rarely, ECG changes in hypothermia may mimic pericarditis, however differentiation can be helpful by a detailed history and presence of an Osborne wave in hypothermia.
Another important diagnostic electrocardiographic sign in acute pericarditis is the Spodick sign. It signifies to the PR-depressions in a usual (but not always) association with downsloping TP segment in patients with acute pericarditis and is present in up to 80% of the patients affected with acute pericarditis. The sign is often best visualized in lead II and lateral precordial leads. In addition, Spodick’s sign may also serve as an important distinguishing electrocardiographic tool between the acute pericarditis and acute coronary syndrome. The presence of a classical Spodick’s sign is often a giveaway to the diagnosis.
Rarely, electrical alternans may be seen, depending on the size of the effusion.
A chest x-ray is usually normal in acute pericarditis, but can reveal the presence of an enlarged heart if a pericardial effusion is present and is greater than 200 mL in volume. Conversely, patients with unexplained new onset cardiomegaly should always be worked up for acute pericarditis.
An echocardiogram is typically normal in acute pericarditis but can reveal pericardial effusion, the presence of which supports the diagnosis, although its absence does not exclude the diagnosis.
When properly diagnosed, the mortality of Lemierre's syndrome is about 4.6%. Since this disease is not well known and often remains undiagnosed, mortality might be much higher.
Several diseases can present with similar signs and symptoms to pneumonia, such as: chronic obstructive pulmonary disease (COPD), asthma, pulmonary edema, bronchiectasis, lung cancer, and pulmonary emboli. Unlike pneumonia, asthma and COPD typically present with wheezing, pulmonary edema presents with an abnormal electrocardiogram, cancer and bronchiectasis present with a cough of longer duration, and pulmonary emboli presents with acute onset sharp chest pain and shortness of breath.
About 30% of people with viral pericarditis or pericarditis of an unknown cause have one or several recurrent episodes.
Depending on the time of presentation and duration, pericarditis is divided into "acute" and "chronic" forms. Acute pericarditis is more common than chronic pericarditis, and can occur as a complication of infections, immunologic conditions, or even as a result of a heart attack (myocardial infarction). Chronic pericarditis however is less common, a form of which is constrictive pericarditis. The following is the clinical classification of acute vs. chronic:
- "Clinically": Acute (6 months)
Health care–associated pneumonia (HCAP) is an infection associated with recent exposure to the health care system, including hospital, outpatient clinic, nursing home, dialysis center, chemotherapy treatment, or home care.
HCAP is sometimes called MCAP (medical care–associated pneumonia).
The definitive treatment for constrictive pericarditis is pericardial stripping, which is a surgical procedure where the entire pericardium is peeled away from the heart. This procedure has significant risk involved, with mortality rates of 6% or higher in major referral centers.
A poor outcome is almost always the result after a pericardiectomy is performed for constrictive pericarditis whose origin was radiation-induced, further some patients may develop heart failure post-operatively.
Diagnosis is by a swab of the affected area for laboratory testing. A Gram stain is performed to show Gram-positive cocci in chains. Then, the organism is cultured on blood agar with an added bacitracin antibiotic disk to show beta-hemolytic colonies and sensitivity (zone of inhibition around the disk) for the antibiotic. Culture on agar not containing blood, and then performing the catalase test should show a negative reaction for all streptococci. "S. pyogenes" is CAMP and hippurate tests negative. Serological identification of the organism involves testing for the presence of group-A-specific polysaccharide in the bacterium's cell wall using the Phadebact test.
The rapid pyrrolidonyl arylamidase (PYR) test is used for the presumptive identification of group A beta-hemolytic streptococci. GBS gives a negative finding on this test.
Blood tests can detect bacterial or viral infections, pneumonia, rheumatic fever, a pulmonary embolism, or lupus.
Prognosis depends on the pathogen responsible for the infection and risk group. Overall mortality for "Candida" meningitis is 10-20%, 31% for patients with HIV, and 11% in neurosurgical cases (when treated). Prognosis for "Aspergillus" and coccidioidal infections is poor.
A CT scan provides a computer-generated picture of the lungs that can show pockets of fluid. It also may show signs of pneumonia, a lung abscess, or a tumor.
Patients with uncomplicated acute pericarditis can generally be treated and followed up in an outpatient clinic. However, those with high risk factors for developing complications (see above) will need to be admitted to an inpatient service, most likely an ICU setting. High risk patients include the following:
- subacute onset
- high fever (> 100.4 F/38 C) and leukocytosis
- development of cardiac tamponade
- large pericardial effusion (echo-free space > 20 mm) resistant to NSAID treatment
- immunocompromised
- history of oral anticoagulation therapy
- acute trauma
- failure to respond to seven days of NSAID treatment
Pericardiocentesis is a procedure whereby the fluid in a pericardial effusion is removed through a needle. It is performed under the following conditions:
- presence of moderate or severe cardiac tamponade
- diagnostic purpose for suspected purulent, tuberculosis, or neoplastic pericarditis
- persistent symptomatic pericardial effusion
NSAIDs in "viral" or "idiopathic" pericarditis. In patients with underlying causes other than viral, the specific etiology should be treated. With idiopathic or viral pericarditis, NSAID is the mainstay treatment. Goal of therapy is to reduce pain and inflammation. The course of the disease may not be affected. The preferred NSAID is ibuprofen because of rare side effects, better effect on coronary flow, and larger dose range. Depending on severity, dosing is between 300–800 mg every 6–8 hours for days or weeks as needed. An alternative protocol is aspirin 800 mg every 6–8 hours. Dose tapering of NSAIDs may be needed. In pericarditis following acute myocardial infarction, NSAIDs other than aspirin should be avoided since they can impair scar formation. As with all NSAID use, GI protection should be engaged. Failure to respond to NSAIDs within one week (indicated by persistence of fever, worsening of condition, new pericardial effusion, or continuing chest pain) likely indicates that a cause other than viral or idiopathic is in process.
Colchicine, which has been essential to treat recurrent pericarditis, has been supported for routine use in acute pericarditis by recent prospective studies. Colchicine can be given 0.6 mg twice a day (0.6 mg daily for patients <70 kg) for 3 months following an acute attack. It should be considered in all patients with acute pericarditis, preferably in combination with a short-course of NSAIDs. For patients with a first episode of acute idiopathic or viral pericarditis, they should be treated with an NSAID plus colchicine 1–2 mg on first day followed by 0.5 daily or twice daily for three months. It should be avoided or used with caution in patients with severe renal insufficiency, hepatobiliary dysfunction, blood dyscrasias, and gastrointestinal motility disorders.
Corticosteroids are usually used in those cases that are clearly refractory to NSAIDs and colchicine and a specific cause has not been found. Systemic corticosteroids are usually reserved for those with autoimmune disease.
In immunocompromised patients, prophylaxis with co-trimoxazole (trimethoprim/sulfamethoxazole), atovaquone, or regular pentamidine inhalations may help prevent PCP.
Antipneumocystic medication is used with concomitant steroids in order to avoid inflammation, which causes an exacerbation of symptoms about four days after treatment begins if steroids are not used. By far the most commonly used medication is trimethoprim/sulfamethoxazole, but some patients are unable to tolerate this treatment due to allergies. Other medications that are used, alone or in combination, include pentamidine, trimetrexate, dapsone, atovaquone, primaquine, pafuramidine maleate (under investigation), and clindamycin. Treatment is usually for a period of about 21 days.
Pentamidine is less often used as its major limitation is the high frequency of side effects. These include acute pancreatic inflammation, kidney failure, liver toxicity, decreased white blood cell count, rash, fever, and low blood sugar.
The diagnosis of plastic bronchitis is confirmed by recovery of casts that have been coughed up or visualized during a bronchoscopy. There is no specific cytologic, pathologic or laboratory test that is diagnostic for casts due to lymphatic PB.
Uremic pericarditis is correlated to the degree of azotemia in the system. BUN is normally >60 mg/dL (normal is 7–20 mg/dL). The pathogenesis is poorly understood.
Simple chest roentenograms may reveal collapse due to airway obstruction. The contralateral lung may be hyperinflated. Casts can be visualized within the major airways using computerized axial tomography scans.
Heavy T2-weighted MRI, and, as appropriate, intranodal lymphangiogram and/or dynamic contrast-enhanced MR lymphangiography may be useful for identifying pathological lymphatic tissue and/or lymphatic flow.