Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
An electrocardiogram (ECG/EKG) may be used to identify arrhythmias, ischemic heart disease, right and left ventricular hypertrophy, and presence of conduction delay or abnormalities (e.g. left bundle branch block). Although these findings are not specific to the diagnosis of heart failure a normal ECG virtually excludes left ventricular systolic dysfunction.
Blood tests routinely performed include electrolytes (sodium, potassium), measures of kidney function, liver function tests, thyroid function tests, a complete blood count, and often C-reactive protein if infection is suspected. An elevated B-type natriuretic peptide (BNP) is a specific test indicative of heart failure. Additionally, BNP can be used to differentiate between causes of dyspnea due to heart failure from other causes of dyspnea. If myocardial infarction is suspected, various cardiac markers may be used.
According to a meta-analysis comparing BNP and N-terminal pro-BNP (NTproBNP) in the diagnosis of heart failure, BNP is a better indicator for heart failure and left ventricular systolic dysfunction. In groups of symptomatic patients, a diagnostic odds ratio of 27 for BNP compares with a sensitivity of 85% and specificity of 84% in detecting heart failure.
Cardiac arrest is synonymous with clinical death.
A cardiac arrest is usually diagnosed clinically by the absence of a pulse. In many cases lack of carotid pulse is the gold standard for diagnosing cardiac arrest, as lack of a pulse (particularly in the peripheral pulses) may result from other conditions (e.g. shock), or simply an error on the part of the rescuer. Nonetheless, studies have shown that rescuers often make a mistake when checking the carotid pulse in an emergency, whether they are healthcare professionals or lay persons.
Owing to the inaccuracy in this method of diagnosis, some bodies such as the European Resuscitation Council (ERC) have de-emphasised its importance. The Resuscitation Council (UK), in line with the ERC's recommendations and those of the American Heart Association,
have suggested that the technique should be used only by healthcare professionals with specific training and expertise, and even then that it should be viewed in conjunction with other indicators such as agonal respiration.
Various other methods for detecting circulation have been proposed. Guidelines following the 2000 International Liaison Committee on Resuscitation (ILCOR) recommendations were for rescuers to look for "signs of circulation", but not specifically the pulse. These signs included coughing, gasping, colour, twitching and movement. However, in face of evidence that these guidelines were ineffective, the current recommendation of ILCOR is that cardiac arrest should be diagnosed in all casualties who are unconscious and not breathing normally. Another method is to use molecular autopsy or postmortem molecular testing which uses a set of molecular techniques to find the ion channels that are cardiac defective.
Athlete's heart is not dangerous for athletes (though if a nonathlete has symptoms of bradycardia, cardiomegaly, and cardiac hypertrophy, another illness may be present). Athlete's heart is not the cause of sudden cardiac death during or shortly after a workout, which mainly occurs due to hypertrophic cardiomyopathy, a genetic disorder.
No treatment is required for people with athletic heart syndrome; it does not pose any physical threats to the athlete, and despite some theoretical concerns that the ventricular remodeling might conceivably predispose for serious arrhythmias, no evidence has been found of any increased risk of long-term events. Athletes should see a physician and receive a clearance to be sure their symptoms are due to athlete’s heart and not another heart disease, such as cardiomyopathy. If the athlete is uncomfortable with having athlete's heart or if a differential diagnosis is difficult, deconditioning from exercise for a period of three months allows the heart to return to its regular size. However, one long-term study of elite-trained athletes found that dilation of the left ventricle was only partially reversible after a long period of deconditioning. This deconditioning is often met with resistance to the accompanying lifestyle changes. The real risk attached to athlete's heart is if athletes or nonathletes simply assume they have the condition, instead of making sure they do not have a life-threatening heart illness.
A jugular venous distension is the most sensitive clinical sign for acute decompensation.
HFpEF is typically diagnosed with echocardiography. Techniques such as catheterization are invasive procedures and thus reserved for patients with co-morbid conditions or those who are suspected to have HFpEF but lack clear non-invasive findings. Catheterization does represent are more definitive diagnostic assessment as pressure and volume measurements are taken simultaneously and directly. In either technique the heart is evaluated for left ventricular diastolic function. Important parameters include, rate of isovolumic relaxation, rate of ventricular filling, and stiffness.
Frequently patients are subjected to stress echocardiography, which involves the above assessment of diastolic function during exercise. This is undertaken because perturbations in diastole are exaggerated during the increased demands of exercise. Exercise requires increased left ventricular filling and subsequent output. Typically the heart responds by increasing heart rate and relaxation time. However, in patients with HFpEF both responses are diminished due to increased ventricular stiffness. Testing during this demanding state may reveal abnormalities that are not as discernible at rest.
An implantable cardioverter defibrillator (ICD) is a battery powered device that monitors electrical activity in the heart and when an arrhythmia or asystole is detected is able to deliver an electrical shock to terminate the abnormal rhythm. ICDs are used to prevent sudden cardiac death (SCD) in those that have survived a prior episode of sudden cardiac arrest (SCA) due to ventricular fibrillation or ventricular tachycardia (secondary prevention). ICDs are also used prophylactically to prevent sudden cardiac death in certain high risk patient populations (primary prevention).
Numerous studies have been conducted on the use of ICDs for the secondary prevention of SCD. These studies have shown improved survival with ICDs compared to the use of anti-arrhythmic drugs. ICD therapy is associated with a 50% relative risk reduction in death caused by an arrhythmia and a 25% relative risk reduction in all cause mortality.
Primary prevention of SCD with ICD therapy for high risk patient populations has similarly shown improved survival rates in a number of large studies. The high risk patient populations in these studies were defined as those with severe ischemic cardiomyopathy (determined by a reduced left ventricular ejection fraction (LVEF)). The LVEF criteria used in these trials ranged from less than or equal to 30% in MADIT-II to less than or equal to 40% in MUSTT.
Because several well-known and high-profile cases of athletes experiencing sudden unexpected death due to cardiac arrest, such as Reggie White and Marc-Vivien Foé, a growing movement is making an effort to have both professional and school-based athletes screened for cardiac and other related conditions, usually through a careful medical and health history, a good family history, a comprehensive physical examination including auscultation of heart and lung sounds and recording of vital signs such as heart rate and blood pressure, and increasingly, for better efforts at detection, such as an electrocardiogram.
An electrocardiogram (ECG) is a relatively straightforward procedure to administer and interpret, compared to more invasive or sophisticated tests; it can reveal or hint at many circulatory disorders and arrhythmias. Part of the cost of an ECG may be covered by some insurance companies, though routine use of ECGs or other similar procedures such as echocardiography (ECHO) are still not considered routine in these contexts. Widespread routine ECGs for all potential athletes during initial screening and then during the yearly physical assessment could well be too expensive to implement on a wide scale, especially in the face of the potentially very large demand. In some places, a shortage of funds, portable ECG machines, or qualified personnel to administer and interpret them (medical technicians, paramedics, nurses trained in cardiac monitoring, advanced practice nurses or nurse practitioners, physician assistants, and physicians in internal or family medicine or in some area of cardiopulmonary medicine) exist.
If sudden cardiac death occurs, it is usually because of pathological hypertrophic enlargement of the heart that went undetected or was incorrectly attributed to the benign "athletic" cases. Among the many alternative causes are episodes of isolated arrhythmias which degenerated into lethal VF and asystole, and various unnoticed, possibly asymptomatic cardiac congenital defects of the vessels, chambers, or valves of the heart. Other causes include carditis, endocarditis, myocarditis, and pericarditis whose symptoms were slight or ignored, or were asymptomatic.
The normal treatments for episodes due to the pathological look-alikes are the same mainstays for any other episode of cardiac arrest: Cardiopulmonary resuscitation, defibrillation to restore normal sinus rhythm, and if initial defibrillation fails, administration of intravenous epinephrine or amiodarone. The goal is avoidance of infarction, heart failure, and/or lethal arrhythmias (ventricular tachycardia, ventricular fibrillation, asystole, or pulseless electrical activity), so ultimately to restore normal sinus rhythm.
The following screening tool may be useful to patients and medical professionals in determining the need to take further action to diagnose symptoms:
There are no specific diagnostic criteria for TIC, and it can be difficult to diagnose for a number of reasons. First, in patients presenting with both tachycardia and cardiomyopathy, it can be difficult to distinguish which is the causative agent. Additionally, it can occur in patients with or without underlying structural heart disease. Previously normal left ventricular ejection fraction or left ventricular systolic dysfunction out of proportion to a patient’s underlying cardiac disease can be important clues to possible TIC. The diagnosis of TIC is made after excluding other causes of cardiomyopathy and observing resolution of the left ventricular systolic dysfunction with treatment of the tachycardia.
Specific tests that can be used in the diagnosis and monitoring of TIC include:
- electrocardiography (EKG)
- Continuous cardiac rhythm monitoring (e.g. Holter monitor)
- echocardiography
- Radionuclide imaging
- Endomyocardial biopsy
- Cardiac magnetic resonance imaging (CMR)
- N-terminal pro-B-type natriuretic peptide (NT-pro BNP)
Cardiac rhythm monitors can be used to diagnose tachyarrhythmias. The most common modality used is an EKG. A continuous rhythm monitor such as a Holter monitor can be used to characterize the frequency of a tachyarrhythmia over a longer period of time. Additionally, some patients may not present to the clinical setting in an abnormal rhythm, and continuous rhythm monitor can be useful to determine if an arrhythmia is present over a longer duration of time.
To assess cardiac structure and function, echocardiography is the most commonly available and utilized modality. In addition to decreased left ventricular ejection fraction, studies indicate that patients with TIC may have a smaller left ventricular end-diastolic dimension compared to patients with idiopathic dilated cardiomyopathy. Radionuclide imaging can be used as a non-invasive test to detect myocardial ischemia. Cardiac MRI has also been used to evaluate patients with possible TIC. Late-gadolinium enhancement on cardiac MRI indicates the presence of fibrosis and scarring, and may be evidence of cardiomyopathy not due to tachycardia. A decline in serial NT-pro BNP with control of tachyarrhythmia indicates reversibility of the cardiomyopathy, which would also suggest TIC.
People with TIC display distinct changes in endomyocardial biopsies. TIC is associated with the infiltration of CD68 macrophages into the myocardium while CD3 T-cells are very rare. Furthermore, patients with TIC display significant fibrosis due to collagen deposition. The distribution of mitochondria has found to be altered as well, with an enrichment at the intercalated discs (EMID-sign).
TIC is likely underdiagnosed due to attribution of the tachyarrhythmia to the cardiomyopathy. Poor control of the tachyarrhythmia can result in worsening of heart failure symptoms and cardiomyopathy. Therefore, it is important to aggressively treat the tachyarrhythmia and monitor patients for resolution of left ventricular systolic dysfunction in cases of suspected TIC.
Ultrafiltration can be used to remove fluids in people with ADHF associated with kidney failure. Studies have found that it decreases health care utilization at 90 days.
The medical care of patients with hypertensive heart disease falls under 2 categories—
- Treatment of hypertension
- Prevention (and, if present, treatment) of heart failure or other cardiovascular disease
Noninvasive imaging plays an important role in the diagnosis and characterisation of myocardial infarction. Tests such as chest X-rays can be used to explore and exclude alternate causes of a person's symptoms. Tests such as stress echocardiography and myocardial perfusion imaging can confirm a diagnosis when a person's history, physical examination (including cardiac examination) ECG, and cardiac biomarkers suggest the likelihood of a problem.
Echocardiography, an ultrasound scan of the heart, is able to visualize the heart, its size, shape, and any abnormal motion of the heart walls as they beat that may indicate a myocardial infarction. The flow of blood can be imaged, and contrast dyes may be given to improve image. Other scans using radioactive contrast include SPECT CT-scans using thallium, sestamibi (MIBI scans) or tetrofosmin; or a PET scan using Fludeoxyglucose or rubidium-82. These nuclear medicine scans can visualize the perfusion of heart muscle. SPECT may also be used to determine viability of tissue, and whether areas of ischemia are inducible.
Medical societies and professional guidelines recommend that the physician confirm a person is at high risk for myocardial infarction before conducting imaging tests to make a diagnosis, as such tests are unlikely to change management and result in increased costs. Patients who have a normal ECG and who are able to exercise, for example, do not merit routine imaging.
It is critical to diagnose CRS at an early stage in order to achieve optimal therapeutic efficacy. However, unlike markers of heart damage or stress such as troponin, creatine kinase, natriuretic peptides, reliable markers for acute kidney injury are lacking. Recently, research has found several biomarkers that can be used for early detection of acute kidney injury before serious loss of organ function may occur. Several of these biomarkers include neutrophil gelatinase-associated lipocalin (NGAL), N-acetyl-B-D-glucosaminidase (NAG), Cystatin C, and kidney injury molecule-1 (KIM-1) which have been shown to be involved in tubular damage. Other biomarkers that have been shown to be useful include BNP, IL-18, and fatty acid binding protein (FABP). However, there is great variability in the measurement of these biomarkers and their use in diagnosing CRS must be assessed.
There are a number of different biomarkers used to determine the presence of cardiac muscle damage. Troponins, measured through a blood test, are considered to be the best, and are preferred because they have greater sensitivity and specificity for measuring injury to the heart muscle than other tests. A rise in troponin occurs within 2–3 hours of injury to the heart muscle, and peaks within 1–2 days. The gross value of the troponin, as well as a change over time, are useful in measuring and diagnosing or excluding myocardial infarctions, and the diagnostic accuracy of troponin testing is improving over time. One high-sensitivity cardiac troponin is able to rule out a heart attack as long as the ECG is normal.
Other tests, such as CK-MB or myoglobin, are discouraged. CK-MB is not as specific as troponins for acute myocardial injury, and may be elevated with past cardiac surgery, inflammation or electrical cardioversion; it rises within 4–8 hours and returns to normal within 2–3 days. Copeptin may be useful to rule out MI rapidly when used along with troponin.
According to JNC 7, BP goals should be as follows :
- Less than 140/90mm Hg in patients with uncomplicated hypertension
- Less than 130/85mm Hg in patients with diabetes and those with renal disease with less than 1g/24-hour proteinuria
- Less than 125/75mm Hg in patients with renal disease and more than 1 g/24-hour proteinuria
Abnormal heart sounds, murmurs, ECG abnormalities, and enlarged heart on chest x-ray may lead to the diagnosis. Echocardiogram abnormalities and cardiac catheterization or angiogram to rule out coronary artery blockages, along with a history of alcohol abuse can confirm the diagnosis.
Diastolic dysfunction must be differentiated from diastolic heart failure. Diastolic dysfunction can be found in elderly and apparently quite healthy patients. If diastolic dysfunction describes an abnormal mechanical property, diastolic heart failure describes a clinical syndrome. Mathematics describing the relationship between the ratio of Systole to Diastole in accepted terms of End Systolic Volume to End Diastolic Volume implies many mathematical solutions to forward and backward heart failure.
Criteria for diagnosis of diastolic dysfunction or diastolic heart failure remain imprecise. This has made it difficult to conduct valid clinical trials of treatments for diastolic heart failure. The problem is compounded by the fact that systolic and diastolic heart failure commonly coexist when patients present with many ischemic and nonischemic etiologies of heart failure. Narrowly defined, diastolic failure has often been defined as "heart failure with normal systolic function" (i.e. left ventricular ejection fraction of 60% or more). Chagasic heart disease may represent an optimal academic model of diastolic heart failure that spares systolic function.
A patient is said to have diastolic dysfunction if he has signs and symptoms of heart failure but the left ventricular ejection fraction is normal. A second approach is to use an elevated BNP level in the presence of normal ejection fraction to diagnose diastolic heart failure. Concordance of both volumetric and biochemical measurements and markers lends to even stronger terminology regarding scientific/mathematical expression of diastolic heart failure. These are both probably too broad a definition for diastolic heart failure, and this group of patients is more precisely described as having heart failure with normal systolic function. Echocardiography can be used to diagnose diastolic dysfunction but is a limited modality unless it is supplemented by stress imaging. MUGA imaging is an earlier mathematical attempt to distinguish systolic from diastolic heart failure.
No one single echocardiographic parameter can confirm a diagnosis of diastolic heart failure. Multiple echocardiographic parameters have been proposed as sufficiently sensitive and specific, including mitral inflow velocity patterns, pulmonary vein flow patterns, E:A reversal, tissue Doppler measurements, and M-mode echo measurements (i.e. of left atrial size). Algorithms have also been developed which combine multiple echocardiographic parameters to diagnose diastolic heart failure.
There are four basic Echocardiographic patterns of diastolic heart failure, which are graded I to IV:
- The mildest form is called an "abnormal relaxation pattern", or grade I diastolic dysfunction. On the mitral inflow Doppler echocardiogram, there is reversal of the normal E/A ratio. This pattern may develop normally with age in some patients, and many grade I patients will not have any clinical signs or symptoms of heart failure.
- Grade II diastolic dysfunction is called "pseudonormal filling dynamics". This is considered moderate diastolic dysfunction and is associated with elevated left atrial filling pressures. These patients more commonly have symptoms of heart failure, and many have left atrial enlargement due to the elevated pressures in the left heart.
Grade III and IV diastolic dysfunction are called "restrictive filling dynamics". These are both severe forms of diastolic dysfunction, and patients tend to have advanced heart failure symptoms:
- Class III diastolic dysfunction patients will demonstrate reversal of their diastolic abnormalities on echocardiogram when they perform the Valsalva maneuver. This is referred to as "reversible restrictive diastolic dysfunction".
- Class IV diastolic dysfunction patients will not demonstrate reversibility of their echocardiogram abnormalities, and are therefore said to suffer from "fixed restrictive diastolic dysfunction".
The presence of either class III and IV diastolic dysfunction is associated with a significantly worse prognosis. These patients will have left atrial enlargement, and many will have a reduced left ventricular ejection fraction that indicates a combination of systolic and diastolic dysfunction.
Imaged volumetric definition of systolic heart performance is commonly accepted as ejection fraction. Volumetric definition of the heart in systole was first described by Adolph Fick as cardiac output. Fick may be readily and inexpensively inverted to cardiac input and injection fraction to mathematically describe diastole. Decline of injection fraction paired with decline of E/A ratio seems a stronger argument in support of a mathematical definition of diastolic heart failure.
Another parameter to assess diastolic function is the , which is the ratio of mitral peak velocity of early filling (E) to early diastolic mitral annular velocity (E'). Diastolic dysfunction is assumed when the E/E' ratio exceed 15.
Limited studies have suggested that screening for atrial fibrillation in those 65 years and older increases the number of cases of atrial fibrillation detected.
In general, the minimal evaluation of atrial fibrillation should be performed in all individuals with AF. The goal of this evaluation is to determine the general treatment regimen for the individual. If results of the general evaluation warrant it, further studies may then be performed.
Generalized enlargement of the heart is seen upon normal chest X-ray. Pleural effusion may also be noticed, which is due to pulmonary venous hypertension.
The electrocardiogram often shows sinus tachycardia or atrial fibrillation, ventricular arrhythmias, left atrial enlargement, and sometimes intraventricular conduction defects and low voltage. When left bundle-branch block (LBBB) is accompanied by right axis deviation (RAD), the rare combination is considered to be highly suggestive of dilated or congestive cardiomyopathy. Echocardiogram shows left ventricular dilatation with normal or thinned walls and reduced ejection fraction. Cardiac catheterization and coronary angiography are often performed to exclude ischemic heart disease.
Genetic testing can be important, since one study has shown that gene mutations in the TTN gene (which codes for a protein called titin) are responsible for "approximately 25% of familial cases of idiopathic dilated cardiomyopathy and 18% of sporadic cases." The results of the genetic testing can help the doctors and patients understand the underlying cause of the dilated cardiomyopathy. Genetic test results can also help guide decisions on whether a patient's relatives should undergo genetic testing (to see if they have the same genetic mutation) and cardiac testing to screen for early findings of dilated cardiomyopathy.
Cardiac magnetic resonance imaging (cardiac MRI) may also provide helpful diagnostic information in patients with dilated cardiomyopathy.
The true incidence of TIC is unclear. Some studies have noted the incidence of TIC in adults with irregular heart rhythms to range from 8% to 34%. Other studies of patients with atrial fibrillation and left ventricular dysfunction estimate that 25-50% of these study participants have some degree of TIC. TIC has been reported in all age groups.
Despite increasing incidence of HFpEF effective inroads to therapeutics have been largely unsuccessful. Currently, recommendations for treatment are directed at symptom relief and co-morbid conditions. Frequently this involves administration of diuretics to relieve complications associated with volume overload, such as leg swelling and high blood pressure.
Commonly encountered conditions that must be treated for and have independent recommendations for standard of care include atrial fibrillation, coronary artery disease, hypertension, and hyperlipidemia. There are particular factors unique to HFpEF that must be accounted for with therapy. Unfortunately, currently available randomized clinical trials addressing the therapeutic adventure for these conditions in HFpEF present conflicting or limited evidence.
Specific aspects of therapeutics should be avoided in HFpEF to prevent the deterioration of the condition. Considerations that are generalizable to heart failure include avoidance of a fast heart rate, elevations in blood pressure, development of ischemia, and atrial fibrillation. More specific to HFpEF include avoidance of preload reduction. As patients display normal ejection fraction but reduced cardiac output they are especially sensitive to changes in preloading and may rapidly display signs of output failure. This means administration of diuretics and vasodilators must be monitored carefully.
HFrEF and HFpEF represent distinct entities in terms of development and effective therapeutic management. Specifically cardiac resynchronization, administration of beta blockers and angiotensin converting enzyme inhibitors are applied to good effect in HFrEF but are largely ineffective at reducing morbidity and mortality in HFpEF. Many of these therapies are effective in reducing the extent of cardiac dilation and increasing ejection fraction in HFrEF patients. It is unsurprising they fail to effect improvement in HFpEF patients, given their un-dilated phenotype and relative normal ejection fraction. Understanding and targeting mechanisms unique to HFpEF are thus essential to the development of therapeutics.
Randomized studies on HFpEF patients have shown that exercise improves left ventricular diastolic function, the heart's ability to relax, and is associated with improved aerobic exercise capacity. The benefit patients seem to derive from exercise does not seem to be a direct cardiac effect but rather is due to changes in peripheral vasculature and skeletal muscle, which show abnormalities in HFpEF patients.
Patients should be regularly assessed to determine progression of the condition, response to interventions, and need for alteration of therapy. Ability to perform daily tasks, hemodynamic status, kidney function, electrolyte balance, and serum natriuretic peptide levels are important parameters. Behavioral management is important in these patients and it is recommended that individuals with HFpEF avoid alcohol, smoking, and high sodium intake.
Usually apparent on the ECG, but if heart rate is above 140 bpm the P wave may be difficult to distinguish from the previous T wave and one may confuse it with a paroxysmal supraventricular tachycardia or atrial flutter with a 2:1 block. Ways to distinguish the three are:
- Vagal maneuvers (such as carotid sinus massage or Valsalva's maneuver) to slow the rate and identification of P waves
- administer AV blockers (e.g., adenosine, verapamil) to identify atrial flutter with 2:1 block
The absence of a pulse confirms a clinical diagnosis of cardiac arrest, but PEA can only be distinguished from other causes of cardiac arrest with a device capable of electrocardiography (ECG/EKG). In PEA, there is organised or semi-organised electrical activity in the heart as opposed to asystole (flatline)or to the disorganised electrical activity of either ventricular fibrillation or ventricular tachycardia.