Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Generally, high-altitude pulmonary edema (HAPE) or AMS precede HACE. In patients with AMS, the onset of HACE is usually indicated by vomiting, headache that does not respond to non-steroidal anti-inflammatory drugs, hallucinations, and stupor. In some situations, however, AMS progresses to HACE without these symptoms. HACE must be distinguished from conditions with similar symptoms, including stroke, intoxication, psychosis, diabetic symptoms, meningitis, or ingestion of toxic substances. It should be the first diagnosis ruled out when sickness occurs while ascending to a high altitude.
HACE is generally preventable by ascending gradually with frequent rest days while climbing or trekking. Not ascending more than daily and not sleeping at a greater height than more than the previous night is recommended. The risk of developing HACE is diminished if acetazolamide or dexamethasone are administered. Generally, the use of acetazolamide is preferred, but dexamethasone can be used for prevention if there are side effects or contraindications. Some individuals are more susceptible to HACE than others, and physical fitness is not preventative. Age and sex do not by themselves affect vulnerability to HACE.
Patients with HACE should be brought to lower altitudes and provided supplemental oxygen, and rapid descent is sometimes needed to prevent mortality. Early recognition is important because as the condition progresses patients are unable to descend without assistance. Dexamethasone should also be administered, although it fails to ameliorate some symptoms that can be cured by descending to a lower altitude. It can also mask symptoms, and they sometimes resume upon discontinuation. Dexamethasone's prevention of angiogenesis may explain why it treats HACE well. Three studies that examined how mice and rat brains react to hypoxia gave some credence to this idea.
If available, supplemental oxygen can be used as an adjunctive therapy, or when descent is not possible. FiO2 should be titrated to maintain arterial oxygen saturation of greater than 90%, bearing in mind that oxygen supply is often limited in high altitude clinics/environments.
In addition to oxygen therapy, a portable hyperbaric chamber (Gamow bag) can by used as a temporary measure in the treatment of HACE. These devices simulate a decrease in altitude of up to 7000 ft, but they are resource intensive and symptoms will often return after discontinuation of the device. Portable hyperbaric chambers should not be used in place of descent or evacuation to definitive care.
Diuretics may be helpful, but pose risks outside of a hospital environment. Sildenafil and tadalafil may help HACE, but there is little evidence of their efficacy. Theophylline is also theorized to help the condition.
Although AMS is not life-threatening, HACE is usually fatal within 24 hours if untreated. Without treatment, the patient will enter a coma and then die. In some cases, patients have died within a few hours, and a few have survived for two days. Descriptions of fatal cases often involve climbers who continue ascending while suffering from the condition's symptoms.
Recovery varies between days and weeks, but most recover in a few days. After the condition is successfully treated, it is possible for climbers to reascend. Dexamethesone should be discontinued, but continual acetazolamide is recommended. In one study, it took patients between one week and one month to display a normal CT scan after suffering from HACE.
The diagnosis of an individual suspected of having "fat embolism syndrome" can be done via the following tests and methods:
The incidence of clinical HAPE in unacclimatized travelers exposed to high altitude (~) appears to be less than 1%. The U.S. Army Pike's Peak Research Laboratory has exposed sea-level-resident volunteers rapidly and directly to high altitude; during 30 years of research involving about 300 volunteers (and over 100 staff members), only three have been evacuated with suspected HAPE.
Treatment for this condition entails the maintenance of intravascular volume. Additionally, the following can be done as a means of managing FES in an individual:
- Albumin can be used for volume resuscitation
- Long bone fractures should be attended to immediately (surgery)
- Mechanical ventilation
The standard and most important treatment is to descend to a lower altitude as quickly as possible, preferably by at least 1000 metres. Oxygen should also be given if possible. Symptoms tend to quickly improve with descent, but more severe symptoms may continue for several days. The standard drug treatments for which there is strong clinical evidence are dexamethasone and nifedipine. Phosphodiesterase inhibitors such as sildenafil and tadalafil are also effective but may worsen the headache of mountain sickness.
The clinician should first rule out conditions with similar symptoms, such as subarachnoid hemorrhage, ischemic stroke, pituitary apoplexy, cerebral artery dissection, meningitis, and spontaneous cerebrospinal fluid leak. This may involve a CT scan, lumbar puncture, MRI, and other tests. Posterior reversible encephalopathy syndrome has a similar presentation, and is found in 10–38% of RCVS patients.
RCVS is diagnosed by detecting diffuse reversible cerebral vasoconstriction. Catheter angiography is ideal, but computed tomography angiography and magnetic resonance angiography can identify about 70% of cases. Multiple angiographies may be necessary. Because other diseases (such as atherosclerosis) have similar angiographic presentations, it can only be conclusively diagnosed if vasoconstriction resolves within 12 weeks.
Many studies of the mechanical properties of brain edema were conducted in the 2010, most of them based on finite element analysis (FEA), a widely used numerical method in solid mechanics. For example, Gao and Ang used the finite element method to study changes in intracranial pressure during craniotomy operations. A second line of research on the condition looks at thermal conductivity, which is related to tissue water content.
Mild and moderate cerebral hypoxia generally has no impact beyond the episode of hypoxia; on the other hand, the outcome of severe cerebral hypoxia will depend on the success of damage control, amount of brain tissue deprived of oxygen, and the speed with which oxygen was restored.
If cerebral hypoxia was localized to a specific part of the brain, brain damage will be localized to that region. A general consequence may be epilepsy. The long-term effects will depend on the purpose of that portion of the brain. Damage to the Broca's area and the Wernicke's area of the brain (left side) typically causes problems with speech and language. Damage to the right side of the brain may interfere with the ability to express emotions or interpret what one sees. Damage on either side can cause paralysis of the opposite side of the body.
The effects of certain kinds of severe generalized hypoxias may take time to develop. For example, the long-term effects of serious carbon monoxide poisoning usually may take several weeks to appear. Recent research suggests this may be due to an autoimmune response caused by carbon monoxide-induced changes in the myelin sheath surrounding neurons.
If hypoxia results in coma, the length of unconsciousness is often indicative of long-term damage. In some cases coma can give the brain an opportunity to heal and regenerate, but, in general, the longer a coma, the greater the likelihood that the person will remain in a vegetative state until death. Even if the patient wakes up, brain damage is likely to be significant enough to prevent a return to normal functioning.
Long-term comas can have a significant impact on a patient's families. Families of coma victims often have idealized images of the outcome based on Hollywood movie depictions of coma. Adjusting to the realities of ventilators, feeding tubes, bedsores, and muscle wasting may be difficult. Treatment decision often involve complex ethical choices and can strain family dynamics.
Treatment approaches can include osmotherapy using mannitol, diuretics to decrease fluid volume, corticosteroids to suppress the immune system, hypertonic saline, and surgical decompression to allow the brain tissue room to swell without compressive injury.
Well-designed clinical trials for stroke treatment in neonates are lacking Recent clinical trials show that therapeutic intervention by brain cooling beginning up to 6 hours after perinatal asphyxia reduces cerebral injury and may improve outcome in term infants, indicating cell death is both delayed and preventable
Pancaspase inhibition and Casp3-selective inhibition have been found to be neuroprotective in neonatal rodents with models of neonatal brain injury, which may lead to pharmacological intervention In a study done by Chauvier, "et al.", it is suggested that a Caspase inhibitor, TRP601, is a candidate for neuroprotective strategy in prenatal brain injury conditions. They found a lack of detectable side effects in newborn rodents and dogs. This may be a useful treatment in combination with hypothermia.
MRI has proven valuable for defining brain injury in the neonate, but animal models are still needed to identify causative mechanisms and to develop neuroprotective therapies. In order to model human fetal or neonatal brain injury, one needs a species in which a similar proportion of brain development occurs in utero, the volume of white to grey matter is similar to the human brain, an insult can be delivered at an equivalent stage of development, the physiological outcome of the insult can be monitored, and neurobehavioral parameters can be tested. Some animals that meet these criteria are sheep, non-human primates, rabbits, spiny mice, and guinea pigs.
Transplantation of neural stem cells and umbilical cord stem cells is currently being trialed in neonatal brain injury, but it is not yet known if this therapy is likely to be successful.
Increased water intake may also help in acclimatization to replace the fluids lost through heavier breathing in the thin, dry air found at altitude, although consuming excessive quantities ("over-hydration") has no benefits and may cause dangerous hyponatremia.
As of 2014, no treatment strategy has yet been investigated in a randomized clinical trial. Verapamil, nimodipine, and other calcium channel blockers may help reduce the intensity and frequency of the headaches. A clinician may recommend rest and the avoidance of activities or vasoactive drugs which trigger symptoms (see § Causes). Analgesics and anticonvulsants can help manage pain and seizures, respectively.
Computed tomography (CT scan): A CT scan may be normal if it is done soon after the onset of symptoms. A CT scan is the best test to look for bleeding in or around your brain. In some hospitals, a perfusion CT scan may be done to see where the blood is flowing and not flowing in your brain.
Magnetic resonance imaging (MRI scan): A special MRI technique (diffusion MRI) may show evidence of an ischemic stroke within minutes of symptom onset. In some hospitals, a perfusion MRI scan may be done to see where the blood is flowing and not flowing in your brain.
Angiogram: a test that looks at the blood vessels that feed the brain. An angiogram will show whether the blood vessel is blocked by a clot, the blood vessel is narrowed, or if there is an abnormality of a blood vessel known as an aneurysm.
Carotid duplex: A carotid duplex is an ultrasound study that assesses whether or not you have atherosclerosis (narrowing) of the carotid arteries. These arteries are the large blood vessels in your neck that feed your brain.
Transcranial Doppler (TCD): Transcranial Doppler is an ultrasound study that assesses whether or not you have atherosclerosis (narrowing) of the blood vessels inside of your brain. It can also be used to see if you have emboli (blood clots) in your blood vessels.
Clinical signs of cerebral edema, such as focal neurological deficits, papilledema and decreased level of consciousness, if temporally associated with recent hemodialysis, suggest the diagnosis. A computed tomography of the head is typically done to rule-out other intracranial causes.
MRI of the head has been used in research to better understand DDS.
For newborn infants starved of oxygen during birth there is now evidence that hypothermia therapy for neonatal encephalopathy applied within 6 hours of cerebral hypoxia effectively improves survival and neurological outcome. In adults, however, the evidence is less convincing and the first goal of treatment is to restore oxygen to the brain. The method of restoration depends on the cause of the hypoxia. For mild-to-moderate cases of hypoxia, removal of the cause of hypoxia may be sufficient. Inhaled oxygen may also be provided. In severe cases treatment may also involve life support and damage control measures.
A deep coma will interfere with body's breathing reflexes even after the initial cause of hypoxia has been dealt with; mechanical ventilation may be required. Additionally, severe cerebral hypoxia causes an elevated heart rate, and in extreme cases the heart may tire and stop pumping. CPR, defibrilation, epinephrine, and atropine may all be tried in an effort to get the heart to resume pumping. Severe cerebral hypoxia can also cause seizures, which put the patient at risk of self-injury, and various anti-convulsant drugs may need to be administered before treatment.
There has long been a debate over whether newborn infants with cerebral hypoxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
Brain damage can occur both during and after oxygen deprivation. During oxygen deprivation, cells die due to an increasing acidity in the brain tissue (acidosis). Additionally, during the period of oxygen deprivation, materials that can easily create free radicals build up. When oxygen enters the tissue these materials interact with oxygen to create high levels of oxidants. Oxidants interfere with the normal brain chemistry and cause further damage (this is known as "reperfusion injury").
Techniques for preventing damage to brain cells are an area of ongoing research. Hypothermia therapy for neonatal encephalopathy is the only evidence-supported therapy, but antioxidant drugs, control of blood glucose levels, and hemodilution (thinning of the blood) coupled with drug-induced hypertension are some treatment techniques currently under investigation. Hyperbaric oxygen therapy is being evaluated with the reduction in total and myocardial creatine phosphokinase levels showing a possible reduction in the overall systemic inflammatory process.
In severe cases it is extremely important to act quickly. Brain cells are very sensitive to reduced oxygen levels. Once deprived of oxygen they will begin to die off within five minutes.
There is no one single test for confirming that breathlessness is caused by pulmonary edema; indeed, in many cases, the cause of shortness of breath is probably multifactorial.
Low oxygen saturation and disturbed arterial blood gas readings support the proposed diagnosis by suggesting a pulmonary shunt. Chest X-ray will show fluid in the alveolar walls, Kerley B lines, increased vascular shadowing in a classical batwing peri-hilum pattern, upper lobe diversion (increased blood flow to the superior parts of the lung), and possibly pleural effusions. In contrast, patchy alveolar infiltrates are more typically associated with noncardiogenic edema
Lung ultrasound, employed by a healthcare provider at the point of care, is also a useful tool to diagnose pulmonary edema; not only is it accurate, but it may quantify the degree of lung water, track changes over time, and differentiate between cardiogenic and non-cardiogenic edema.
Especially in the case of cardiogenic pulmonary edema, urgent echocardiography may strengthen the diagnosis by demonstrating impaired left ventricular function, high central venous pressures and high pulmonary artery pressures.
Blood tests are performed for electrolytes (sodium, potassium) and markers of renal function (creatinine, urea). Liver enzymes, inflammatory markers (usually C-reactive protein) and a complete blood count as well as coagulation studies (PT, aPTT) are also typically requested. B-type natriuretic peptide (BNP) is available in many hospitals, sometimes even as a point-of-care test. Low levels of BNP (<100 pg/ml) suggest a cardiac cause is unlikely.
While there are no standard criteria for the diagnosis of Grinker's myelinopathy, neuroimaging can be an important diagnostic tool in ruling out other diagnoses. Magnetic resonance imaging (MRI) or computed tomography (CT) scans can be used to demonstrate a decrease in white matter density in the patient’s cerebral hemispheres, with the typical exception of overlying cortices. Unexplained, uniform demyelination of white matter can indicate acute onset Grinker's myelinopathy.
In high-altitude conditions, oxygen enrichment can counteract the hypoxia related effects of altitude sickness. A small amount of supplemental oxygen reduces the equivalent altitude in climate-controlled rooms. At (), raising the oxygen concentration level by 5% via an oxygen concentrator and an existing ventilation system provides an effective altitude of (), which is more tolerable for those unaccustomed to high altitudes.
Oxygen from gas bottles or liquid containers can be applied directly via a nasal cannula or mask. Oxygen concentrators based upon pressure swing adsorption (PSA), VSA, or vacuum-pressure swing adsorption (VPSA) can be used to generate the oxygen if electricity is available. Stationary oxygen concentrators typically use PSA technology, which has performance degradations at the lower barometric pressures at high altitudes. One way to compensate for the performance degradation is to utilize a concentrator with more flow capacity. There are also portable oxygen concentrators that can be used on vehicular DC power or on internal batteries, and at least one system commercially available measures and compensates for the altitude effect on its performance up to . The application of high-purity oxygen from one of these methods increases the partial pressure of oxygen by raising the FiO (fraction of inspired oxygen).
Some evidence suggests that magnesium sulfate administered to mothers prior to early preterm birth reduces the risk of cerebral palsy in surviving neonates. Due to the risk of adverse effects treatments may have, it is unlikely that treatments to prevent neonatal strokes or other hypoxic events would be given routinely to pregnant women without evidence that their fetus was at extreme risk or has already suffered an injury or stroke. This approach might be more acceptable if the pharmacologic agents were endogenously occurring substances (those that occur naturally in an organism), such as creatine or melatonin, with no adverse side-effects.
Because of the period of high neuronal plasticity in the months after birth, it may be possible to improve the neuronal environment immediately after birth in neonates considered to be at risk of neonatal stroke. This may be done by enhancing the growth of axons and dendrites, synaptogenesis and myelination of axons with systemic injections of neurotrophins or growth factors which can cross the blood–brain barrier.
To counter the effects of high-altitude diseases, the body must return arterial p toward normal. Acclimatization, the means by which the body adapts to higher altitudes, only partially restores p to standard levels. Hyperventilation, the body’s most common response to high-altitude conditions, increases alveolar p by raising the depth and rate of breathing. However, while p does improve with hyperventilation, it does not return to normal. Studies of miners and astronomers working at 3000 meters and above show improved alveolar p with full acclimatization, yet the p level remains equal to or even below the threshold for continuous oxygen therapy for patients with chronic obstructive pulmonary disease (COPD). In addition, there are complications involved with acclimatization. Polycythemia, in which the body increases the number of red blood cells in circulation, thickens the blood, raising the danger that the heart can’t pump it.
In high-altitude conditions, only oxygen enrichment can counteract the effects of hypoxia. By increasing the concentration of oxygen in the air, the effects of lower barometric pressure are countered and the level of arterial p is restored toward normal capacity. A small amount of supplemental oxygen reduces the equivalent altitude in climate-controlled rooms. At 4000 m, raising the oxygen concentration level by 5 percent via an oxygen concentrator and an existing ventilation system provides an altitude equivalent of 3000 m, which is much more tolerable for the increasing number of low-landers who work in high altitude. In a study of astronomers working in Chile at 5050 m, oxygen concentrators increased the level of oxygen concentration by almost 30 percent (that is, from 21 percent to 27 percent). This resulted in increased worker productivity, less fatigue, and improved sleep.
Oxygen concentrators are uniquely suited for this purpose. They require little maintenance and electricity, provide a constant source of oxygen, and eliminate the expensive, and often dangerous, task of transporting oxygen cylinders to remote areas. Offices and housing already have climate-controlled rooms, in which temperature and humidity are kept at a constant level. Oxygen can be added to this system easily and relatively cheaply.
A prescription renewal for home oxygen following hospitalization requires an assessment of the patient for ongoing hypoxemia.
Diagnostic methods for hypertensive encephalopathy include physical examination, blood pressure measurement, blood sampling, ECG, EEG, chest X-ray, urinalysis, arterial blood gas analysis, and imaging of the head (CAT scan and/or MRI). Since decreasing the blood pressure is essential, anti-hypertensive medication is administered without awaiting the results of the laboratory tests. Electroencephalographic examination detects the absence of alpha waves, signifying impaired consciousness. In people with visual disturbances, slow waves are detected in the occipital areas.
There are different approaches to non-invasive intracranial pressure measurement, which include ultrasound "time-of-flight" techniques, transcranial Doppler, methods based on acoustic properties of the cranial bones, EEG, MRI, tympanic membrane displacement, oto-acoustic emission, ophthalmodynamometry, ultrasound measurements of optic nerve sheath diameter, and Two-Depth Transorbital Doppler. Most of the approaches are "correlation based". Such approaches can not measure an absolute ICP value in mmHg or other pressure units because of the need for individual patient specific calibration. Calibration needs non-invasive "gold standard" ICP meter which does not exists.
Non-invasive absolute intracranial pressure value meter, based on ultrasonic Two-Depth Transorbital Doppler technology, has been shown to be accurate and precise in clinical settings and prospective clinical studies. Analysis of the 171 simultaneous paired recordings of non-invasive ICP and the "gold standard" invasive CSF pressure on 110 neurological patients and TBI patients showed good accuracy for the non-invasive method as indicated by the low mean systematic error (0.12 mmHg; confidence level (CL) = 0.98). The method also showed high precision as indicated by the low standard deviation (SD) of the random errors
(SD = 2.19 mmHg; CL = 0.98).
This measurement method and technique (the only non-invasive ICP measurement technique which already received EU CE Mark approval) eliminates the main limiting problem of all other non-successful "correlation based" approaches to non-invasive ICP absolute value measurement - the need of calibration to the individual patient.
The main techniques of diagnosing SVCS are with chest X-rays (CXR), CT scans, transbronchial needle aspiration at bronchoscopy and mediastinoscopy. CXRs provide the ability to show mediastinal widening and may show the presenting primary cause of SVCS. CT scans should be contrast enhanced and be taken on the neck, chest, lower abdomen and pelvis. They may also show the underlying cause and the extent to which the disease has progressed.
Dysbarism refers to medical conditions resulting from changes in ambient pressure. Various activities are associated with pressure changes. underwater diving is the most frequently cited example, but pressure changes also affect people who work in other pressurized environments (for example, caisson workers), and people who move between different altitudes.