Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
At present there is no specific treatment. Many patients with haemolytic anaemia take folic acid (vitamin B) since the greater turnover of cells consumes this vitamin. During crises transfusion may be required. Clotting problems can occur for which anticoagulation may be needed. Unlike hereditary spherocytosis, splenectomy is contraindicated.
The diagnosis of hereditary elliptocytosis is usually made by coupling a family history of the condition with an appropriate clinical presentation and confirmation on a blood smear. In general it requires that at least 25% of erythrocytes in the specimen are abnormally elliptical in shape, though the observed percentage of elliptocytes can be 100%. This is in contrast to the rest of the population, in which it is common for up to 15% of erythrocytes to be elliptical.
If some doubt remains regarding the diagnosis, definitive diagnosis can involve osmotic fragility testing, an autohaemolysis test, and direct protein assaying by gel electrophoresis.
Those with hereditary elliptocytosis have a good prognosis, only those with very severe disease have a shortened life expectancy.
When vWD is suspected, blood plasma of a patient must be investigated for quantitative and qualitative deficiencies of vWF. This is achieved by measuring the amount of vWF in a vWF antigen assay and the functionality of vWF with a glycoprotein (GP)Ib binding assay, a collagen binding assay, or a ristocetin cofactor activity (RiCof) or ristocetin induced platelet agglutination (RIPA) assays. Factor VIII levels are also performed because factor VIII is bound to vWF which protects the factor VIII from rapid breakdown within the blood. Deficiency of vWF can then lead to a reduction in factor VIII levels, which explains the elevation in PTT. Normal levels do not exclude all forms of vWD, particularly type 2, which may only be revealed by investigating platelet interaction with subendothelium under flow, a highly specialized coagulation study not routinely performed in most medical laboratories. A platelet aggregation assay will show an abnormal response to ristocetin with normal responses to the other agonists used. A platelet function assay may give an abnormal collagen/epinephrine closure time, and in most cases, a normal collagen/ADP time. Type 2N may be considered if factor VIII levels are disproportionately low, but confirmation requires a "factor VIII binding" assay. Additional laboratory tests that help classify sub-types of vWD include von-willebrand multimer analysis, modified ristocetin induced platelet aggregation assay and vWF propeptide to vWF antigen ratio propeptide. In cases of suspected acquired von-Willebrand syndrome, a mixing study study (analysis of patient plasma along with pooled normal plasma/PNP and a mixture of the two tested immediately, at one hour, and at two hours) should be performed. Detection of vWD is complicated by vWF being an acute phase reactant with levels rising in infection, pregnancy, and stress.
Other tests performed in any patient with bleeding problems are a complete blood count-CBC (especially platelet counts), activated partial thromboplastin time-APTT, prothrombin time with International Normalized Ratio-PTINR, thrombin time-TT, and fibrinogen level. Testing for factor IX may also be performed if hemophilia B is suspected. Other coagulation factor assays may be performed depending on the results of a coagulation screen. Patients with von Willebrand disease typically display a normal prothrombin time and a variable prolongation of partial thromboplastin time.
The testing for vWD can be influenced by laboratory procedures. Numerous variables exist in the testing procedure that may affect the validity of the test results and may result in a missed or erroneous diagnosis. The chance of procedural errors are typically greatest during the preanalytical phase (during collecting storage and transportation of the specimen) especially when the testing is contracted to an outside facility and the specimen is frozen and transported long distances. Diagnostic errors are not uncommon, and the rate of testing proficiency varies amongst laboratories, with error rates ranging from 7 to 22% in some studies to as high as 60% in cases of misclassification of vWD subtype. To increase the probability of a proper diagnosis, testing should be done at a facility with immediate on-site processing in a specialized coagulation laboratory.
In a peripheral blood smear, the red blood cells will "appear" abnormally small and lack the central pale area that is present in normal red blood cells. These changes are also seen in non-hereditary spherocytosis, but they are typically more pronounced in hereditary spherocytosis. The number of immature red blood cells (reticulocyte count) will be elevated. An increase in the mean corpuscular hemoglobin concentration is also consistent with hereditary spherocytosis.
Other protein deficiencies cause hereditary elliptocytosis, pyropoikilocytosis or stomatocytosis.
In longstanding cases and in patients who have taken iron supplementation or received numerous blood transfusions, iron overload may be a significant problem. This is a potential cause of heart muscle damage and liver disease. Measuring iron stores is therefore considered part of the diagnostic approach to hereditary spherocytosis.
An osmotic fragility test can aid in the diagnosis. In this test, the spherocytes will rupture in liquid solutions less concentrated than the inside of the red blood cell. This is due to increased permeability of the spherocyte membrane to salt and water, which enters the concentrated inner environment of the RBC and leads to its rupture. Although the osmotic fragility test is widely considered the gold standard for diagnosing hereditary spherocytosis, it misses as many as 25% of cases. Flow cytometric analysis of eosin-5′-maleimide-labeled intact red blood cells and the acidified glycerol lysis test are two additional options to aid diagnosis.
The Düsseldorf score stratifies cases using four categories, giving one point for each; bone marrow blasts ≥5%, LDH >200U/L, haemoglobin ≤9g/dL and a platelet count ≤100,000/uL. A score of 0 indicates a low risk group' 1-2 indicates an intermediate risk group and 3-4 indicates a high risk group. The cumulative 2 year survival of scores 0, 1-2 and 3-4 is 91%, 52% and 9%; and risk of AML transformation is 0%, 19% and 54% respectively.
Haematologists have identified a number of variants. These can be classified as below.
- Overhydrated hereditary stomatocytosis
- Dehydrated HSt (hereditary xerocytosis; hereditary hyperphosphatidylcholine haemolytic anaemia)
- Dehydrated with perinatal ascites
- Cryohydrocytosis
- 'Blackburn' variant.
- Familial pseudohyperkalaemia
There are other families that do not fall neatly into any of these classifications.
Stomatocytosis is also found as a hereditary disease in Alaskan malamute and miniature schnauzer dogs.
Experimental gene therapy exists to treat hereditary spherocytosis in lab mice; however, this treatment has not yet been tried on humans due to all of the risks involved in human gene therapy.
First degree relatives of those with primary haemochromatosis should be screened to determine if they are a carrier or if they could develop the disease. This can allow preventive measures to be taken.
Screening the general population is not recommended.
In 1993, Peter James Dyck divided HSAN I further into five subtypes HSAN IA-E based on the presence of additional features. These features were thought to result from the genetic diversity of HSAN I (i.e. the expression of different genes, different alleles of a single gene, or modifying genes) or environmental factors. Molecular genetic studies later confirmed the genetic diversity of the disease.
There exist other causes of excess iron accumulation, which have to be considered before haemochromatosis is diagnosed.
- African iron overload, formerly known as Bantu siderosis, was first observed among people of African descent in Southern Africa. Originally, this was blamed on ungalvanised barrels used to store home-made beer, which led to increased oxidation and increased iron levels in the beer. Further investigation has shown that only some people drinking this sort of beer get an iron overload syndrome, and that a similar syndrome occurred in people of African descent who have had no contact with this kind of beer ("e.g.," African Americans). This led investigators to the discovery of a gene polymorphism in the gene for ferroportin which predisposes some people of African descent to iron overload.
- Transfusion haemosiderosis is the accumulation of iron, mainly in the liver, in patients who receive frequent blood transfusions (such as those with thalassaemia).
- Dyserythropoeisis, also known as myelodysplastic syndrome, is a disorder in the production of red blood cells. This leads to increased iron recycling from the bone marrow and accumulation in the liver.
One 10-year-old girl with Crigler–Najjar syndrome type I was successfully treated by liver cell transplantation.
The homozygous Gunn rat, which lacks the enzyme uridine diphosphate glucuronyltransferase (UDPGT), is an animal model for the study of Crigler–Najjar syndrome. Since only one enzyme is working improperly, gene therapy for Crigler-Najjar is a theoretical option which is being investigated.
The International Prognostic Scoring System (IPSS) was developed in the mid-1990s to assess the prognosis of MDS patients. This system stratifies cases into 2 groups; a lower-risk group (sub divided into low and intermediate-1) and a higher risk (subdivided into intermediate-2 and high). It uses the blast percentage, number of cytopaenias and bone marrow cytogenetics data to place cases of CMML into these groups. Due to the scoring system being developed for MDS, the more myeloproliferative cases of CMML (WBC >13x10) are excluded from the scoring system. Although the IPSS scoring system is used clinically, there is a high variability in each group. For this reason, new modalities for assessing prognosis in MDS (and CMML) are being developed.
Diagnosis of acquired dysfibrinogenemia uses the same laboratory tests that are used for congenital dysfibrinogenemia plus evidence for an underlying causative disease.
The diagnosis of HSAN I is based on the observation of symptoms described above and is supported by a family history suggesting autosomal dominant inheritance. The diagnosis is also supported by additional tests, such as nerve conduction studies in the lower limbs to confirm a sensory and motor neuropathy. In sporadic cases, acquired neuropathies, such as the diabetic foot syndrome and alcoholic neuropathy, can be excluded by the use of magnetic resonance imaging and by interdisciplinary discussion between neurologists, dermatologists, and orthopedics.
The diagnosis of the disease has been revolutionized by the identification of the causative genes. The diagnosis is now based on the detection of the mutations by direct sequencing of the genes. Nevertheless, the accurate phenotyping of patients remains crucial in the diagnosis. For pregnant patients, termination of pregnancy is not recommended.
HSAN I must be distinguished from hereditary motor and sensory neuropathy (HMSN) and other types of hereditary sensory and autonomic neuropathies (HSAN II-V). The prominent sensory abnormalities and foot ulcerations are the only signs to separate HSAN I from HMSN. HSAN II can be differentiated from HSAN I as it is inherited as an autosomal recessive trait, it has earlier disease onset, the sensory loss is diffused to the whole body, and it has less or no motor symptoms. HSAN III-V can be easily distinguished from HSAN I because of congenital disease onset. Moreover, these types exhibit typical features, such as the predominant autonomic disturbances in HSAN III or congenital loss of pain and anhidrosis in HSAN IV.
Clinically the disease may be silent, but characteristic radiological features may point to the diagnosis. The increased iron stores in the organs involved, especially in the liver and pancreas, result in characteristic findings on unenhanced CT and a decreased signal intensity in MRI scans. Haemochromatosis arthropathy includes degenerative osteoarthritis and chondrocalcinosis. The distribution of the arthropathy is distinctive, but not unique, frequently affecting the second and third metacarpophalangeal joints of the hand. The arthropathy can therefore be an early clue as to the diagnosis of haemochromatosis.
There are several methods available for diagnosing and monitoring iron loading including:
- Serum ferritin: In males and postmenopausal females, a serum ferritin value of over 300 ng/mL (670 pmol/L) indicates iron overload. In premenopausal females, a serum ferritin value of over 150 or 200 ng/mL (330 or 440 pmol/L) indicates iron overload.
- Liver biopsy
- HFE
- MRI
Serum ferritin testing is a low-cost, readily available, and minimally invasive method for assessing body iron stores. However, the major problem with using it as an indicator of iron overload is that it can be elevated in a range of other medical conditions unrelated to iron levels including infection, inflammation, fever, liver disease, kidney disease, and cancer. Also, total iron binding capacity may be low, but can also be normal.
The standard of practice in diagnosis of haemochromatosis was recently reviewed by Pietrangelo. Positive HFE analysis confirms the clinical diagnosis of haemochromatosis in asymptomatic individuals with blood tests showing increased iron stores, or for predictive testing of individuals with a family history of haemochromatosis. The alleles evaluated by HFE gene analysis are evident in ~80% of patients with haemochromatosis; a negative report for HFE gene does not rule out haemochromatosis. In a patient with negative HFE gene testing, elevated iron status for no other obvious reason, and family history of liver disease, additional evaluation of liver iron concentration is indicated. In this case, diagnosis of haemochromatosis is based on biochemical analysis and histologic examination of a liver biopsy. Assessment of the hepatic iron index (HII) is considered the "gold standard" for diagnosis of haemochromatosis.
Magnetic resonance imaging (MRI) is emerging as a noninvasive alternative to accurately estimate iron deposition levels in the liver as well as heart, joints, and pituitary gland.
Treatment of asymptomatic congenital dysfibrinogenemia depends in part on the expectations of developing bleeding and/or thrombotic complications as estimated based on the history of family members with the disorder and, where available, determination of the exact mutation causing the disorder plus the propensity of the particular mutation type to develop these complications. In general, individuals with this disorder require regular follow-up and multidiscipline management prior to surgery, pregnancy, and giving childbirth. Women with the disorder appear to have an increased rate of miscarriages and all individuals with fibrinogen activity in clotting tests below 0.5 grams/liter are prone to bleeding and spontaneous abortions. Women with multiple miscarriages and individuals with excessively low fibrinogen activity levels should be considered for prophylaxis therapy with fibrinogen replacement during pregnancy, delivery, and/or surgery.
The four hereditary types of vWD described are type 1, type 2, type 3, and pseudo- or platelet-type. Most cases are hereditary, but acquired forms of vWD have been described. The International Society on Thrombosis and Haemostasis's classification depends on the definition of qualitative and quantitative defects.
Neonatal jaundice may develop in the presence of sepsis, hypoxia, hypoglycemia, hypothyroidism, hypertrophic pyloric stenosis, galactosemia, fructosemia, etc.
Hyperbilirubinemia of the unconjugated type may be caused by:
- increased production
- hemolysis (e.g., hemolytic disease of the newborn, hereditary spherocytosis, sickle cell disease)
- ineffective erythropoiesis
- massive tissue necrosis or large hematomas
- decreased clearance
- drug-induced
- physiological neonatal jaundice and prematurity
- liver diseases such as advanced hepatitis or cirrhosis
- breast milk jaundice and Lucey–Driscoll syndrome
- Crigler–Najjar syndrome and Gilbert syndrome
In Crigler–Najjar syndrome and Gilbert syndrome, routine liver function tests are normal, and hepatic histology usually is normal, too. No evidence for hemolysis is seen. Drug-induced cases typically regress after discontinuation of the substance. Physiological neonatal jaundice may peak at 85–170 µmol/l and decline to normal adult concentrations within two weeks. Prematurity results in higher levels.
Usually, a common form of treatment for the condition is a type of hand cream which moisturises the hard skin. However, currently the condition is incurable.
1) Detection of orotic acid in urine
2) Deficiency of Enzymes orotate phosphoribosyl transferase and OMP decarboxylase
Treatment varies depending on the specific type. A low protein diet may be required in the management of tyrosinemia. Recent experience with nitisinone has shown it to be effective. It is a 4-hydroxyphenylpyruvate dioxygenase inhibitor indicated for
the treatment of hereditary tyrosinemia type 1 (HT-1) in combination with
dietary restriction of tyrosine and phenylalanine. The most effective treatment in patients with tyrosinemia type I seems to be full or partial liver transplant.
Recognizing HAE is often difficult due to the wide variability in disease expression. The course of the disease is diverse and unpredictable, even within a single patient over their lifetime. This disease may be similar in its presentation to other forms of angioedema resulting from allergies or other medical conditions, but it is significantly different in cause and treatment. When hereditary angioedema is misdiagnosed as an allergy it is most commonly treated with steroids and epinephrine, drugs that are usually ineffective in treating a hereditary angioedema episode. Other misdiagnoses have resulted in unnecessary exploratory surgery for patients with abdominal swelling and other hereditary angioedema patients report that their abdominal pain was wrongly diagnosed as psychosomatic.
HAE accounts for only a small fraction of all cases of angioedema. To avoid potentially fatal consequences such as upper airway obstruction and unnecessary abdominal surgery, the importance of a correct diagnosis cannot be over-emphasized.
Consider hereditary angioedema (HAE) if a patient presents with:
- Recurrent angioedema (without urticaria)
- Recurrent episodes of abdominal pain and vomiting
- Laryngeal edema
- Positive family history of angioedema
A blood test, ideally taken during an episode, can be used to diagnose the condition. Measure: serum complement factor 4 (C4),
C1 inhibitor (C1-INH) antigenic protein, C1 inhibitor (C1-INH) functional level if available.Analysis of complement C1 inhibitor levels may play a role in diagnosis. C4 and C2 are complementary components.
Treatment with ACE inhibitors is contraindicated in this condition, as these drugs can lead to bradykinin accumulation, which can precipitate disease episodes.