Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
1) Detection of orotic acid in urine
2) Deficiency of Enzymes orotate phosphoribosyl transferase and OMP decarboxylase
The diagnosis for argininemia can usually be done using fetal blood sample. One can look for the following indicators as to the presence of the condition:
- Plasma ammonia concentration.
- Urinary orotic acid concentration
- Red blood cell arginase enzyme activity(measurement)
Diagnostic methods
Diagnosis is based mainly on clinical findings and laboratory test results. Plasma concentrations of ammonia (>150 µmol/L) and citrulline (200-300 µmol/L) are elevated. Elevated levels of argininosuccinic acid (5-110 µmol/L) in the plasma or urine are diagnostic. Molecular genetic testing confirms diagnosis. Newborn screening for ASA is available in the U.S. and parts of Australia, and is considered in several European countries<
In individuals with marked hyperammonemia, a urea cycle disorder is usually high on the list of possible causes. While the immediate focus is lowering the patient's ammonia concentrations, identifying the specific cause of increased ammonia levels is key as well.
Diagnostic testing for OTC deficiency, or any individual with hyperammonemia involves plasma and urine amino acid analysis, urine organic acid analysis (to identify the presence or absence of orotic acid, as well as rule out an organic acidemia) and plasma acylcarnitines (will be normal in OTC deficiency, but can identify some other causes of hyperammonemia). An individual with untreated OTC deficiency will show decreased citrulline and arginine concentrations (because the enzyme block is proximal to these intermediates) and increased orotic acid. The increased orotic acid concentrations result from the buildup of carbamoyl phosphate. This biochemical phenotype (increased ammonia, low citrulline and increased orotic acid) is classic for OTC deficiency, but can also be seen in neonatal presentations of ornithine aminotransferase deficiency. Only severely affected males consistently demonstrate this classic biochemical phenotype.
Heterozygous females can be difficult to diagnose. With the rise of sequencing techniques, molecular testing has become preferred, particularly when the disease causing mutations in the family are known. Historically, heterozygous females were often diagnosed using an allopurinol challenge. In a female with reduced enzyme activity, an oral dose of allopurinol would be metabolized to oxypurinol ribonucleotide, which blocks the pyrimidine biosynthetic pathway. When this induced enzymatic block is combined with reduced physiologic enzyme activity as seen in heterozygotes, the elevation of orotic acid could be used to differentiate heterozygotes from unaffected individuals. This test was not universally effective, as it had both false negative and false positive results.
Ornithine transcarbamylase is only expressed in the liver, thus performing an enzyme assay to confirm the diagnosis requires a liver biopsy. Before molecular genetic testing was commonly available, this was one of the only methods for confirmation of a suspected diagnosis. In cases where prenatal diagnosis was requested, a fetal liver biopsy used to be required to confirm if a fetus was affected. Modern molecular techniques have eliminated this need, and gene sequencing is now the preferred method of diagnosis in asymptomatic family members after the diagnosis has been confirmed in a proband.
Due to the rarity of the disease, it is hard to estimate mortality rates or life expectancy. One 2003 study which followed 88 cases receiving two different kinds of treatment found that very few persons lived beyond age 20 and none beyond age 30.
A 1999 retrospective study of 74 cases of neonatal onset found that 32 (43%) patients died during their first hyperammonemic episode. Of those who survived, less than 20% survived to age 14. Few of these patients received liver transplants.
Clinically, MCADD or another fatty acid oxidation disorder is suspected in individuals who present with lethargy, seizures, coma and hypoketotic hypoglycemia, particularly if triggered by a minor illness. MCADD can also present with acute liver disease and hepatomegaly, which can lead to a misdiagnosis of Reye syndrome. In some individuals, the only manifestation of MCADD is sudden, unexplained death often preceded by a minor illness that would not usually be fatal.
In areas with expanded newborn screening using tandem mass spectrometry (MS/MS), MCADD is usually detected shortly after birth, by the analysis of blood spots collected on filter paper. Acylcarnitine profiles with MS/MS will show a very characteristic pattern of elevated hexanoylcarnitine (C6), octanoylcarnitine (C8), decanoylcarnitine (C10) or decenoylcarnitine (C10:1), with C8 being greater than C6 and C10. Secondary carnitine deficiency is sometimes seen with MCADD, and in these cases, acylcarnitine profiles may not be informative. Urine organic acid analysis by gas chromatography-mass spectrometry (GC-MS) will show a pattern of dicarboxylic aciduria with low levels of ketones. Traces of acylglycine species may also be detected. Asymptomatic individuals may have normal biochemical lab results. For these individuals, targeted analysis of acylglycine species by GC-MS, specifically hexanoylglycine and suberylglycine can be diagnostic. After biochemical suspicion of MCADD, molecular genetic analysis of "ACADM" can be used to confirm the diagnosis. The analysis of MCAD activity in cultured fibroblasts can also be used for diagnosis.
In cases of sudden death where the preceding illness would not usually have been fatal, MCADD is often suspected. The autopsy will often show fatty deposits in the liver. In cases where MCADD is suspected, acylcarnitine analysis of bile and blood can be undertaken postmortem for diagnosis. Where samples are not available, residual blood from newborn screening may be helpful. Biochemical testing of asymptomatic siblings and parents may also be informative. MCADD and other fatty acid oxidation disorders have been recognized in recent years as undiagnosed causes of sudden infant death syndrome.
Upon clinical suspicion, diagnostic testing will often consist of measurement of amino acid concentrations in plasma, in search of a significantly elevated ornithine concentration. Measurement of urine amino acid concentrations is sometimes necessary, particularly in neonatal onset cases to identify the presence or absence of homocitrulline for ruling out ornithine translocase deficiency (hyperornithinemia, hyperammonemia, homocitrullinuria syndrome, HHH syndrome). Ornithine concentrations can be an unreliable indicator in the newborn period, thus newborn screening may not detect this condition, even if ornithine is included in the screening panel. Enzyme assays to measure the activity of ornithine aminotransferase can be performed from fibroblasts or lymphoblasts for confirmation or during the neonatal period when the results of biochemical testing is unclear. Molecular genetic testing is also an option.
The treatment for infants (individuals) with argininemia is the following, including medications:
Administration of cytidine monophosphate and uridine monophosphate reduces urinary orotic acid and ameliorates the anemia.
Administration of uridine, which is converted to UMP, will bypass the metabolic block and provide the body with a source of pyrimidine.
Uridine triacetate is a drug approved by FDA to be used in the treatment of hereditary orotic aciduria.
Treatment or management of organic acidemias vary; eg see methylmalonic acidemia, propionic acidemia, isovaleric acidemia, and maple syrup urine disease.
As of 1984 there were no effective treatments for all of the conditions, though treatment for some included a limited protein/high carbohydrate diet, intravenous fluids, amino acid substitution, vitamin supplementation, carnitine, induced anabolism, and in some cases, tube-feeding.
As of 1993 ketothiolase deficiency and other OAs were managed by trying to restore biochemical and physiologic homeostasis; common therapies included restricting diet to avoid the precursor amino acids and use of compounds to either dispose of toxic metabolites or increase enzyme activity.
Organic acidemias are usually diagnosed in infancy, characterized by urinary excretion of abnormal amounts or types of organic acids. The diagnosis is usually made by detecting an abnormal pattern of organic acids in a urine sample by gas chromatography-mass spectrometry. In some conditions, the urine is always abnormal, in others the characteristic substances are only present intermittently. Many of the organic acidemias are detectable by newborn screening with tandem mass spectrometry.
These disorders vary in their prognosis, from manageable to fatal, and usually affect more than one organ system, especially the central nervous system.
Neurological damage and developmental delay are common factors in diagnosis, with associated symptoms ranging from poor feeding to slow growth, lethargy, vomiting,
dehydration, malnutrition, hypoglycemia, hypotonia, metabolic acidosis, ketoacidosis, hyperammonemia, and if left untreated, death.
Less than 20 patients with MGA type I have been reported in the literature (Mol Genet Metab. 2011 Nov;104(3):410-3. Epub 2011 Jul 26.)
A 1994 study of the entire population of New South Wales (Australia) found 20 patients. Of these, 5 (25%) had died at or before 30 months of age. Of the survivors, 1 (5%) was severely disabled and the remainder had either suffered mild disability or were making normal progress in school. A 2006 Dutch study followed 155 cases and found that 27 individuals (17%) had died at an early age. Of the survivors, 24 (19%) suffered from some degree of disability, of which most were mild. All the 18 patients diagnosed neonatally were alive at the time of the follow-up.
Like many other organic acidemias, GA1 causes carnitine depletion. Whole-blood carnitine can be raised by oral supplementation. However, this does not significantly change blood concentrations of glutarylcarnitine or esterified carnitine, suggesting that oral supplementation is suboptimal in raising tissue levels of carnitine. In the field of clinical nutrition, researchers come to the same conclusion, that oral carnitine raises plasma levels but doesn't affect muscle carnitine, where most of it is stored and used.
- In contrast, regular intravenous infusions of carnitine caused distinct clinical improvements: "decreased frequency of decompensations, improved growth, improved muscle strength and decreased reliance on medical foods with liberalization of protein intake."
- Choline increases carnitine uptake and retention. Choline supplements are inexpensive, safe (probably even in all children requiring anticholinergics) and can provide spectacular evidence of the suboptimal efficiency of carnitine supplementation by increasing exercise tolerance, truncal tone and general well-being.
Patients with propionic acidemia should be started as early as possible on a low protein diet. In addition to a protein mixture that is devoid of methionine, threonine, valine, and isoleucine, the patient should also receive -carnitine treatment and should be given antibiotics 10 days per month in order to remove the intestinal propiogenic flora. The patient should have diet protocols prepared for him with a “well day diet” with low protein content, a “half emergency diet” containing half of the protein requirements, and an “emergency diet” with no protein content. These patients are under the risk of severe hyperammonemia during infections that can lead to comatose states.
Liver transplant is gaining a role in the management of these patients, with small series showing improved quality of life.
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
The diagnosis is based on the biochemical findings (increased concentrations of lysine, arginine and ornithine in urine and low concentrations of these amino acids in plasma, elevation of urinary orotic acid excretion after protein-rich meals, and inappropriately high concentrations of serum ferritin and lactate dehydrogenase isoenzymes) and the screening of known mutations of the causative gene from a DNA sample.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is.
Propionic acidemia is inherited in an autosomal recessive pattern and is found in about 1 in 35,000 live births in the United States. The condition appears to be more common in Saudi Arabia, with a frequency of about 1 in 3,000. The condition also appears to be common in Amish, Mennonite and other populations where inbreeding is common.
There exist other causes of excess iron accumulation, which have to be considered before haemochromatosis is diagnosed.
- African iron overload, formerly known as Bantu siderosis, was first observed among people of African descent in Southern Africa. Originally, this was blamed on ungalvanised barrels used to store home-made beer, which led to increased oxidation and increased iron levels in the beer. Further investigation has shown that only some people drinking this sort of beer get an iron overload syndrome, and that a similar syndrome occurred in people of African descent who have had no contact with this kind of beer ("e.g.," African Americans). This led investigators to the discovery of a gene polymorphism in the gene for ferroportin which predisposes some people of African descent to iron overload.
- Transfusion haemosiderosis is the accumulation of iron, mainly in the liver, in patients who receive frequent blood transfusions (such as those with thalassaemia).
- Dyserythropoeisis, also known as myelodysplastic syndrome, is a disorder in the production of red blood cells. This leads to increased iron recycling from the bone marrow and accumulation in the liver.
Treatment of LPI consists of protein-restricted diet and supplementation with oral citrulline. Citrulline is a neutral amino acid that improves the function of the urea cycle and allows sufficient protein intake without hyperammonemia. Under proper dietary control and supplementation, the majority of the LPI patients are able to have a nearly normal life. However, severe complications including pulmonary alveolar proteinosis and renal insufficiency may develop even with proper treatment.
Fertility appears to be normal in women, but mothers with LPI have an increased risk for complications during pregnancy and delivery.
This condition is sometimes mistaken for Reye syndrome, a severe disorder that develops in children while they appear to be recovering from viral infections such as chicken pox or flu. Most cases of Reye syndrome are associated with the use of aspirin during these viral infections.
D-Glyceric Acidemia should not be confused with L-Glyceric Acidemia (a.k.a. L-glyceric aciduria, a.k.a. primary hyperoxaluria type II ), which is associated with mutations in the "GRHPR" (encoding for the enzyme 'glyoxylate reductase/hydroxypyruvate reductase').