Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Usually, a common form of treatment for the condition is a type of hand cream which moisturises the hard skin. However, currently the condition is incurable.
Schöpf–Schulz–Passarge syndrome (also known as "eyelid cysts, palmoplantar keratoderma, hypodontia, and hypotrichosis") is an autosomal recessive condition with diffuse symmetric palmoplantar keratoderma, with the palmoplantar keratoderma and fragility of the nails beginning around age 12. In addition to palmoplantar keratoderma, other symptoms include hypodontia, hypotrichosis, nail dystrophies, and eyelid cysts (apocrine hidrocystomas). Patients may also develop syringofibroadenoma and squamous cell carcinomas.
It was characterized in 1971.
It has been associated with WNT10A.
Hypotrichosis–lymphedema–telangiectasia syndrome is a congenital syndrome characterized by lymphedema (swelling of tissue due to malformation or malfunction of lymphatics), the presence of telegiectasias (small dilated vessels near the surface of the skin), and hypotrichosis or alopecia (hair loss). Lymphedema usually develops in the lower extremities during puberty. Hair is normal at birth, but usually lost during infancy. Telangiectasias may present on the palms and soles more commonly than on the scalp, legs, and genitalia. The syndrome has been reported in association with both autosomal dominant and autosomal recessive inheritance patterns.
It is associated with a rare mutation of the transcription factor gene "SOX18".
Diagnosis is made by clinical observation and the following tests.
(1) Gram stain of the fluid from pustules or bullae, and tissue swab.
(2) Blood culture
(3) Urine culture
(4) Skin biopsy
(5) Tissue culture
Magnetic resonance imaging can be done in case of ecthyma gangrenosum of plantar foot to differentiate from necrotizing fasciitis.
Hypotrichosis–acro-osteolysis–onychogryphosis–palmoplantar keratoderma–periodontitis syndrome (also known as "HOPP syndrome") is a cutaneous condition characterized by a prominent palmoplantar keratoderma.
The diagnosis is confirmed by bone marrow smears that show "giant inclusion bodies" in the cells that develop into white blood cells (leukocyte precursor cells). CHS can be diagnosed prenatally by examining a sample of hair from a fetal scalp biopsy or testing leukocytes from a fetal blood sample.
Under light microscopy the hairs present evenly distributed, regular melanin granules, larger than those found in normal hairs. Under polarized light microscopy these hairs exhibit a bright and polychromatic refringence pattern.
Many conditions affect the human integumentary system—the organ system covering the entire surface of the body and composed of skin, hair, nails, and related muscle and glands. The major function of this system is as a barrier against the external environment. The skin weighs an average of four kilograms, covers an area of two square meters, and is made of three distinct layers: the epidermis, dermis, and subcutaneous tissue. The two main types of human skin are: glabrous skin, the hairless skin on the palms and soles (also referred to as the "palmoplantar" surfaces), and hair-bearing skin. Within the latter type, the hairs occur in structures called pilosebaceous units, each with hair follicle, sebaceous gland, and associated arrector pili muscle. In the embryo, the epidermis, hair, and glands form from the ectoderm, which is chemically influenced by the underlying mesoderm that forms the dermis and subcutaneous tissues.
The epidermis is the most superficial layer of skin, a squamous epithelium with several strata: the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale. Nourishment is provided to these layers by diffusion from the dermis, since the epidermis is without direct blood supply. The epidermis contains four cell types: keratinocytes, melanocytes, Langerhans cells, and Merkel cells. Of these, keratinocytes are the major component, constituting roughly 95 percent of the epidermis. This stratified squamous epithelium is maintained by cell division within the stratum basale, in which differentiating cells slowly displace outwards through the stratum spinosum to the stratum corneum, where cells are continually shed from the surface. In normal skin, the rate of production equals the rate of loss; about two weeks are needed for a cell to migrate from the basal cell layer to the top of the granular cell layer, and an additional two weeks to cross the stratum corneum.
The dermis is the layer of skin between the epidermis and subcutaneous tissue, and comprises two sections, the papillary dermis and the reticular dermis. The superficial papillary dermis with the overlying rete ridges of the epidermis, between which the two layers interact through the basement membrane zone. Structural components of the dermis are collagen, elastic fibers, and ground substance. Within these components are the pilosebaceous units, arrector pili muscles, and the eccrine and apocrine glands. The dermis contains two vascular networks that run parallel to the skin surface—one superficial and one deep plexus—which are connected by vertical communicating vessels. The function of blood vessels within the dermis is fourfold: to supply nutrition, to regulate temperature, to modulate inflammation, and to participate in wound healing.
The subcutaneous tissue is a layer of fat between the dermis and underlying fascia. This tissue may be further divided into two components, the actual fatty layer, or panniculus adiposus, and a deeper vestigial layer of muscle, the panniculus carnosus. The main cellular component of this tissue is the adipocyte, or fat cell. The structure of this tissue is composed of septal (i.e. linear strands) and lobular compartments, which differ in microscopic appearance. Functionally, the subcutaneous fat insulates the body, absorbs trauma, and serves as a reserve energy source.
Conditions of the human integumentary system constitute a broad spectrum of diseases, also known as dermatoses, as well as many nonpathologic states (like, in certain circumstances, melanonychia and racquet nails). While only a small number of skin diseases account for most visits to the physician, thousands of skin conditions have been described. Classification of these conditions often presents many nosological challenges, since underlying etiologies and pathogenetics are often not known. Therefore, most current textbooks present a classification based on location (for example, conditions of the mucous membrane), morphology (chronic blistering conditions), etiology (skin conditions resulting from physical factors), and so on. Clinically, the diagnosis of any particular skin condition is made by gathering pertinent information regarding the presenting skin lesion(s), including the location (such as arms, head, legs), symptoms (pruritus, pain), duration (acute or chronic), arrangement (solitary, generalized, annular, linear), morphology (macules, papules, vesicles), and color (red, blue, brown, black, white, yellow). Diagnosis of many conditions often also requires a skin biopsy which yields histologic information that can be correlated with the clinical presentation and any laboratory data.
Epidermolytic palmoplantar keratoderma has been associated with keratin 9 and keratin 16.
Nonepidermolytic palmoplantar keratoderma has been associated with keratin 1 and keratin 16.
William Becker first described an association between NME and glucagonoma in 1942 and since then, NME has been described in as many as 70% of individuals with a glucagonoma. NME is considered part of the glucagonoma syndrome, which is associated with hyperglucagonemia, diabetes mellitus, and hypoaminoacidemia.
When NME is identified in the absence of a glucagonoma, it may be considered "pseudoglucagonoma syndrome". Less common than NME with glucagonoma, pseudoglucagonoma syndrome may occur in a number of systemic disorders:
- Celiac disease
- Ulcerative colitis
- Crohn's disease
- Hepatic cirrhosis
- Hepatocellular carcinoma
- Lung cancer, including small cell lung cancer
- Tumors that secrete insulin- or insulin-like growth factor 2
- Duodenal cancer
Anomalies of the hair shaft caused by ectodermal dysplasia should be ruled out. Mutations in the CDH3 gene can also appear in EEM syndrome.
The extent of retinal damage is assessed by fluorescent angiography, retinal scanning and optical coherence tomography; electrophysiological examinations such as electroretinography (ERG) or multifocal electroretinography (mfERG) may also be used.
Lelis syndrome it is a genetic disorder, a rare condition with dermatological and dental findings characterized by the association of ectodermal dysplasia (hypotrichosis and hypohidrosis) with acanthosis nigricans. Other clinical features may include palmoplantar hyperkeratosis, nail dystrophy, intellectual deficit, disturbances of skin pigmentation (perioral and periorbital hyperpigmentation, vitiligo, and perinevic leukoderma) and hypodontia. Transmission is autosomal recessive.
There are several manifestations of Chédiak–Higashi syndrome as mentioned above; however, neutropenia seems to be the most common. The syndrome is associated with oculocutaneous albinism. Persons are prone for infections, especially with "Staphylococcus aureus", as well as "Streptococci".
It is associated with periodontal disease of the deciduous dentition. Associated features include abnormalities in melanocytes (albinism), nerve defects, bleeding disorders.
Before any treatment of leg telangectasia (spider veins) is considered, it is essential to have duplex ultrasonography, the test that has replaced Doppler ultrasound. The reason for this is that there is a clear association between leg telangectasia (spider veins) and underlying venous reflux. Research has shown that 88-89% of women with telangectasia (spider veins) have refluxing reticular veins close, and 15% have incompetent perforator veins nearby. As such, it is essential to both find and treat underlying venous reflux before considering any treatment at all.
Sclerotherapy is the "gold standard" and is preferred over laser for eliminating telangiectasiae and smaller varicose leg veins. A sclerosant medication is injected into the diseased vein so it hardens and eventually shrinks away. Recent evidence with foam sclerotherapy shows that the foam containing the irritating sclerosant quickly appears in the patient's heart and lungs, and then in some cases travels through a patent foramen ovale to the brain. This has led to concerns about the safety of sclerotherapy for telangectasias and spider veins.
In some cases stroke and transient ischemic attacks have occurred after sclerotherapy. Varicose veins and reticular veins are often treated before treating telangiectasia, although treatment of these larger veins in advance of sclerotherapy for telangiectasia may not guarantee better results. Varicose veins can be treated with foam sclerotherapy, endovenous laser treatment, radiofrequency ablation, or open surgery. The biggest risk, however, seems to occur with sclerotherapy, especially in terms of systemic risk of DVT, pulmonary embolism, and stroke.
Other issues which arise with the use of sclerotherapy to treat spider veins are staining, shadowing, telangetatic matting, and ulceration. In addition, incompleteness of therapy is common, requiring multiple treatment sessions.
Telangiectasias on the face are often treated with a laser. Laser therapy uses a light beam that is pulsed onto the veins in order to seal them off, causing them to dissolve. These light-based treatments require adequate heating of the veins. These treatments can result in the destruction of sweat glands, and the risk increases with the number of treatments.
The histopathologic features of NME are nonspecific and include:
- epidermal necrosis
- subcorneal pustules
- confluent parakeratosis, epidermal hyperplasia, and marked papillary dermal hyperplasia in a psoriasiform pattern
- angioplasia of papillary dermis
- suppurative folliculitis
The vacuolated, pale, swollen epidermal cells and necrosis of the superficial epidermis are most characteristic. Immunofluorescence is usually negative.
The main organism associated with ecthyma gangrenosum is "Pseudomonas aeruginosa". However, multi-bacterial cases are reported as well. Prevention measures include practicing proper hygiene, educating the immunocompromised patients for awareness to avoid possible conditions and seek timely medical treatment.
Some mucoceles spontaneously resolve on their own after a short time. Others are chronic and require surgical removal. Recurrence may occur, and thus the adjacent salivary gland is excised as a preventive measure.
Several types of procedures are available for the surgical removal of mucoceles. These include laser and minimally-invasive techniques which means recovery times are reduced drastically.
Micro-marsupialization is an alternative procedure to surgical removal. Micro-marsupialization uses silk sutures in the dome of a cyst to allow new epithelialized drainage pathways. It is simpler, less traumatic, and well-tolerated by patients, especially children.
A non-surgical option that may be effective for a small or newly identified mucocele is to rinse the mouth thoroughly with salt water (one tablespoon of salt per cup) four to six times a day for a few days. This may draw out the fluid trapped underneath the skin without further damaging the surrounding tissue. If the mucocele persists, individuals should see a doctor to discuss further treatment.
Smaller cysts may be removed by laser treatment, larger cysts will have to be removed surgically in an operating room.
Marie Unna hereditary hypotrichosis (also known as "Marie Unna hypotrichosis") is an autosomal dominant condition characterized by scalp hair that is sparse or absent at birth, with variable coarse, wiry hair regrowth in childhood, and potential loss again at puberty.
The cutaneous manifestations of Birt–Hogg–Dubé were originally described as fibrofolliculomas (abnormal growths of a hair follicle), trichodiscomas (hamartomatous lesions with a hair follicle at the periphery, often found on the face), and acrochordons (skin tags). Cutaneous manifestations are confirmed by histology. Most individuals (89%) with BHD are found to have multiple cysts in both lungs, and 24% have had one or more episodes of pneumothorax. The cysts can be detected by chest CT scan. Renal tumors can manifest as multiple types of renal cell carcinoma, but certain pathological subtypes (including chromophobe, oncocytoma, and oncocytic hybrid tumors) are more commonly seen. Although the original syndrome was discovered on the basis of cutaneous findings, it is now recognized that individuals with Birt–Hogg–Dubé may only manifest the pulmonary and/or renal findings, without any skin lesions. Though these signs indicate BHD, it is only confirmed with a genetic test for FLCN mutations.
Pure hair-nail type ectodermal dysplasia is a genetic mutation in the "hair matrix and cuticle keratin KRTHB5 gene" that causes ectodermal dysplasia of hair and nail type. Manifestations of this disorder include onychodystrophy and severe hypotrichosis. It represents as an autosomal dominant trait.
CRMO/CNO is a diagnosis of exclusion. This means that other diseases must be ruled out before the diagnosis can be made. Generally, many tests are required, such as blood tests, x-rays, bone scans, MRI and often a bone biopsy.
"FLCN" mutations are detected by sequencing in 88% of probands with Birt–Hogg–Dubé syndrome. This means that some people with the clinical diagnosis have mutations that are not detectable by current technology, or that mutations in another currently unknown gene could be responsible for a minority of cases. In addition, amplifications and deletions in exonic regions are also tested. Genetic testing can be useful to confirm the clinical diagnosis of and to provide a means of determining other at-risk individuals in a family even if they have not yet developed BHD symptoms.
Patients show markedly low immunoglobulin levels of IgG, IgA, and IgM.
Cases of lymphangioma are diagnosed by histopathologic inspection. In prenatal cases, cystic lymphangioma is diagnosed using an ultrasound; when confirmed amniocentesis may be recommended to check for associated genetic disorders.
Goldman states that "numerous inherited or congenital conditions display cutaneous telangiectasia".
These include:
- Naevus flammeus (port-wine stain)
- Klippel-Trenaunay syndrome
- Maffucci's syndrome (multiple enchondromas & hemangiomas)
- Hereditary hemorrhagic telangiectasia (Osler-Weber-Rendu syndrome)
- Ataxia-telangiectasia
- Sturge-Weber syndrome, a nevus formation in the skin supplied by the trigeminal nerve and associated with facial port-wine stains, glaucoma, meningeal angiomas and mental retardation
- Hypotrichosis–lymphedema–telangiectasia syndrome, caused by mutation in transcription factor "SOX18"