Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are a variety of standardized assessment scales available to physiotherapists and other health care professionals for use in the ongoing evaluation of the status of a patient’s hemiplegia. The use of standardized assessment scales may help physiotherapists and other health care professionals during the course of their treatment plant to:
- Prioritize treatment interventions based on specific identifiable motor and sensory deficits
- Create appropriate short- and long-term goals for treatment based on the outcome of the scales, their professional expertise and the desires of the patient
- Evaluate the potential burden of care and monitor any changes based on either improving or declining scores
Some of the most commonly used scales in the assessment of hemiplegia are:
- The Fugl-Meyer Assessment of Physical Performance (FMA)
The FMA is often used as a measure of functional or physical impairment following a cerebrovascular accident (CVA). It measures sensory and motor impairment of the upper and lower extremities, balance in several positions, range of motion, and pain. This test is a reliable and valid measure in measuring post-stroke impairments related to stroke recovery. A lower score in each component of the test indicates higher impairment and a lower functional level for that area. The maximum score for each component is 66 for the upper extremities, 34 for the lower extremities, and 14 for balance. Administration of the FMA should be done after reviewing a training manual.
- The Chedoke-McMaster Stroke Assessment (CMSA)
This test is a reliable measure of two separate components evaluating both motor impairment and disability. The disability component assesses any changes in physical function including gross motor function and walking ability. The disability inventory can have a maximum score of 100 with 70 from the gross motor index and 30 from the walking index. Each task in this inventory has a maximum score of seven except for the 2 minute walk test which is out of two. The impairment component of the test evaluates the upper and lower extremities, postural control and pain. The impairment inventory focuses on the seven stages of recovery from stroke from flaccid paralysis to normal motor functioning. A training workshop is recommended if the measure is being utilized for the purpose of data collection.
- The Stroke Rehabilitation Assessment of Movement (STREAM)
The STREAM consists of 30 test items involving upper-limb movements, lower-limb movements, and basic mobility items. It is a clinical measure of voluntary movements and general mobility (rolling, bridging, sit-to-stand, standing, stepping, walking and stairs) following a stroke. The voluntary movement part of the assessment is measured using a 3-point ordinal scale (unable to perform, partial performance, and complete performance) and the mobility part of the assessment uses a 4-point ordinal scale (unable, partial, complete with aid, complete no aid). The maximum score one can receive on the STREAM is a 70 (20 for each limb score and 30 for mobility score). The higher the score, the better movement and mobility is available for the individual being scored.
Hemiplegia is identified by clinical examination by a health professional, such as a physiotherapist or doctor. Radiological studies like a CT scan or magnetic resonance imaging of the brain should be used to confirm injury in the brain and spinal cord, but alone cannot be used to identify movement disorders. Individuals who develop seizures may undergo tests to determine where the focus of excess electrical activity is.
Hemiplegia patients usually show a characteristic gait. The leg on the affected side is extended and internally rotated and is swung in a wide, lateral arc rather than lifted in order to move it forward. The upper limb on the same side is also adducted at the shoulder, flexed at the elbow, and pronated at the wrist with the thumb tucked into the palm and the fingers curled around it.
Weber's syndrome is the only form of alternating hemiplegia that is somewhat easy to diagnose beyond the general criteria. Although Weber's syndrome is rare, a child born with the disorder typically has a port-wine stain on the face around the eye. While the port-wine stain does not necessarily mean the child has Weber's syndrome, if the port-wine stain involves the ophthalmic division of the trigeminal nerve than the likelihood of it being weber's syndrome greatly increases. If a port-wine stain around the eye is found, the patient should be screened for intracranial leptomeningeal angiomatosis. Magnetic resonance imaging (MRI)can be used to determine the presence and severity while computed cranial tomography can be used to determine the effect. MRI is the preferred diagnostic test on children presenting with port-wine stain. Other imaging techniques can be used in addition to further determine the severity of the disorder. The initial diagnosis is made based on the presence of neurologic and ophthalmic disease but the disease progresses differently in each patient so after initial diagnosis the patient should be monitored frequently in order to handle further complications resulting from the syndrome.
There is no diagnostic test for alternating hemiplegia, which makes it very difficult to diagnose. Also, because alternating hemiplegia is extremely rare, it is frequently missed and the patient is often misdiagnosed. Proper diagnosis, however, is critical for early treatment of the disorder. There are many criteria that can help in the proper general diagnosis of alternating hemiplegia.
The diagnosis may be made on the clinical features alone, along with tests to rule out other possible causes. An EEG will usually show the electrical features of epilepsy and slowing of brain activity in the affected hemisphere, and MRI brain scans will show gradual shrinkage of the affected hemisphere with signs of inflammation or scarring.
Brain biopsy can provide very strong confirmation of the diagnosis, but this is not always necessary.
From the knowledge of the sensimotor development a number of other automatic reactions were distinguished, such as balance, support and automatic adaptations of muscle power changes to postures. Patients with hemiplegia have movements that are lower level and less motor coordination, and often must relearn these movements to continue or gain normal automatic transitions in the body. Neuro developmental treatment (NDT) often improves daily functioning and self-help. This treatment centers on reversing disabilities, specifically for patients who are hemiplegic with impaired sensimotor and neuropsychological functions. Muscle regulation that is disturbed, often called hypo or hypertonic, causes abnormal movement patterns. These automatic reactions are impaired, and patients must learn these movements and remember mentally and physically the positions.
NDT uses muscle power techniques through inhibiting and stimulating certain muscle groups, which aims to lower or increase muscle tone. For facial expression, therapists often help the patient make facial expressions by manipulating specific muscles with their fingers. The patient then tries to imitate the facial expressions. Speech therapy helps correct word pronunciation. NDT is directed at the functioning of the whole body, and not just the face. Understanding the direct mechanisms of the face is required to determine the dysfunction of specific muscles. NDT seems to be effective, but spontaneous motor movement that is controlled was not examined.
Every disease has different signs and symptoms. Some of them are persistent headache; pain in the face, back, arms, or legs; an inability to concentrate; loss of feeling; memory loss; loss of muscle strength; tremors; seizures; increased reflexes, spasticity, tics; paralysis; and slurred speech. One should seek medical attention if affected by these.
Pathologically, PMG is defined as “an abnormally thick cortex formed by the piling upon each other of many small gyri with a fused surface.” To view these microscopic characteristics, magnetic resonance imaging (MRI) is used. First physicians must distinguish between polymicrogyria and pachygyria. Pachygria leads to the development of broad and flat regions in the cortical area, whereas the effect of PMG is the formation of multiple small gyri. Underneath a computerized tomography (CT scan) scan, these both appear similar in that the cerebral cortex appears thickened. However, MRI with a T1 weighted inversion recovery will illustrate the gray-white junction that is characterized by patients with PMG. An MRI is also usually preferred over the CT scan because it has sub-millimeter resolution. The resolution displays the multiple folds within the cortical area, which is continuous with the neuropathology of an infected patient.
During the acute stage, treatment is aimed at reducing the inflammation. As in other inflammatory diseases, steroids may be used first of all, either as a short course of high-dose treatment, or in a lower dose for long-term treatment. Intravenous immunoglobulin is also effective both in the short term and in the long term, particularly in adults where it has been proposed as first-line treatment. Other similar treatments include plasmapheresis and tacrolimus, though there is less evidence for these. None of these treatments can prevent permanent disability from developing.
During the residual stage of the illness when there is no longer active inflammation, treatment is aimed at improving the remaining symptoms. Standard anti-epileptic drugs are usually ineffective in controlling seizures, and it may be necessary to surgically remove or disconnect the affected cerebral hemisphere, in an operation called hemispherectomy. This usually results in further weakness, hemianopsia and cognitive problems, but the other side of the brain may be able to take over some of the function, particularly in young children. The operation may not be advisable if the left hemisphere is affected, since this hemisphere contains most of the parts of the brain that control language. However, hemispherectomy is often very effective in reducing seizures.
Diagnosis of megalencephaly has changed over the years, however, with the development of more advanced equipment, physicians have been able to confirm the disorder with better accuracy. Usually, a physical exam is first performed when characteristics of megalencephaly have appeared. This typically occurs at birth or during early child development. A physician will then take head measurements in order to determine the circumference. This is known as the head circumference. Then a family background will be recorded in order to determine if there has been a history of megalencephaly in the family.
A neurological exam will then be performed using the technology of an MRI machine in order to confirm the diagnosis of megalencephaly. These imaging tests give detailed information regarding brain size, volume asymmetry and other irregular developments linked with MCAP, MPPH and hemimegalencephaly.
There is also a strong correlation of epilepsy and megalencephaly and this can aid doctors in their diagnosis.
If a diagnosis of megalencephaly is confirmed, the child is referred to a specialist who focuses on managing the symptoms and improving lifestyle. Since megalencephaly is usually presented with autism, the goal of treatment is to improve deficiencies associated with autistic causes. Additionally, since each patient has unique symptoms, there is no one specific treatment method and therefore is heavily reliant on symptoms associated with an individual.
In one study, the lab group primarily focused on the electrophysiological evaluation of corticonuclear descending fibers to the lower facial motor neurons in patients with central facial palsy, and the discussion of how central facial palsy can become mild from various recovery techniques. It was found that in normal subjects unilateral TMS stimulation of the motor cortex induced EMG responses from the perioral muscles. This finding supports other studies in favor that bilateral projection of the corticonuclear fibers of the lower facial muscles are present in humans and primates with normal function. The study also found that ipsilateral corticonuclear fibers were found in the lower facial muscles, which does not coincide with other papers. The variation could be from the selection of muscles used in the study as well as the different electrodes that were used.
The orbicularis oculi muscles are often examined in patients with facial paralysis. In the study, it was difficult to elicit any corticunuclear EMG responses from this area in both normal subjects and in patients with CFP. This could be because the cortical links and synapses of the upper facial muscles are limited in function and TMS could not presynaptically stimulate the correct areas observed in paralysis. These areas are important because they stimulate the presynaptic preterminals in cortical neurons. Also, this stimulation to the brain can not be studied on healthy human subjects. The upper facial muscle ME responses could not be innervated by TMS and the low threshold of blink reflexes often interferes with the nature of corticobulbar influences.
The diagnosis can be confirmed when the characteristic centrotemporal spikes are seen on electroencephalography (EEG). Typically, high-voltage spikes followed by slow waves are seen. Given the nocturnal activity, a sleep EEG can often be helpful. Technically, the label "benign" can only be confirmed if the child's development continues to be normal during follow-up. Neuroimaging, usually with an MRI scan, is only advised for cases with atypical presentation or atypical findings on clinical examination or EEG.
The disorder should be differentiated from several other conditions, especially centrotemporal spikes without seizures, centrotemporal spikes with local brain pathology, central spikes in Rett syndrome and fragile X syndrome, malignant Rolandic epilepsy, temporal lobe epilepsy and Landau-Kleffner syndrome.
There is a wide range of treatments for central nervous system diseases. These can range from surgery to neural rehabilitation or prescribed medications.
Gross examination exposes a pattern of many small gyri clumped together, which causes an irregularity in the brain surface. The cerebral cortex, which in normal patients is six cell layers thick, is also thinned. As mentioned prior, the MRI of an infected patient shows what appears to be a thickening of the cerebral cortex because of the tiny folds that aggregate causing a more dense appearance. However gross analysis shows an infected patient can have as few as one to all six of these layers missing.
Prenatal screening is not typically done for FHM, however it may be performed if requested. As penetrance is high, individuals found to carry mutations should be expected to develop signs of FHM at some point in life.
The presence of porencephalic cysts or cavities can be detected using trans-illumination of the skull of infant patients. Porencephaly is usually diagnosed clinically using the patients and families history, clinical observations, or based on the presence of certain characteristic neurological and physiological features of porencephaly. Advanced medical imaging with computed tomography (CT), magnetic resonance imaging (MRI), or with ultrasonography can be used as a method to exclude other possible neurological disorders. The diagnosis can be made antenatally with ultrasound. Other assessments include memory, speech, or intellect testing to help further determine the exact diagnose of the disorder.
Diagnosis of FHM is made according to the following criteria:
- Two attacks of each of the following:
- At least one close (first or second degree) relative with FHM
- No other likely cause
Sporadic forms follow the same diagnostic criteria, with the exception of family history.
In all cases, family and patient history is used for diagnosis. Brain imaging techniques, such as MRI, CAT scans and SPECT, are used to look for signs of other familial conditions such as CADASIL or mitochondrial disease, and for evidence of cerebellar degeneration. With the discovery of causative genes, genetic sequencing can also be used to verify diagnosis (though not all genetic loci are known).
Treatment involves removal of the etiologic mass and decompressive craniectomy. Brain herniation can cause severe disability or death. In fact, when herniation is visible on a CT scan, the prognosis for a meaningful recovery of neurological function is poor. The patient may become paralyzed on the same side as the lesion causing the pressure, or damage to parts of the brain caused by herniation may cause paralysis on the side opposite the lesion. Damage to the midbrain, which contains the reticular activating network which regulates consciousness, will result in coma. Damage to the cardio-respiratory centers in the medulla oblongata will cause respiratory arrest and (secondarily) cardiac arrest. Current investigation is underway regarding the use of neuroprotective agents during the prolonged post-traumatic period of brain hypersensitivity associated with the syndrome.
Some evidence suggests that magnesium sulfate administered to mothers prior to early preterm birth reduces the risk of cerebral palsy in surviving neonates. Due to the risk of adverse effects treatments may have, it is unlikely that treatments to prevent neonatal strokes or other hypoxic events would be given routinely to pregnant women without evidence that their fetus was at extreme risk or has already suffered an injury or stroke. This approach might be more acceptable if the pharmacologic agents were endogenously occurring substances (those that occur naturally in an organism), such as creatine or melatonin, with no adverse side-effects.
Because of the period of high neuronal plasticity in the months after birth, it may be possible to improve the neuronal environment immediately after birth in neonates considered to be at risk of neonatal stroke. This may be done by enhancing the growth of axons and dendrites, synaptogenesis and myelination of axons with systemic injections of neurotrophins or growth factors which can cross the blood–brain barrier.
The prognosis for Rolandic seizures is invariably excellent, with probably less than 2% risk of developing absence seizures and less often GTCS in adult life.
Remission usually occurs within 2–4 years from onset and before the age of 16 years. The total number of seizures is low, the majority of patients having fewer than 10 seizures; 10–20% have just a single seizure. About 10–20% may have frequent seizures, but these also remit with age.
Children with Rolandic seizures may develop usually mild and reversible linguistic, cognitive and behavioural abnormalities during the active phase of the disease. These may be worse in children with onset of seizures before 8 years of age, high rate of occurrence and multifocal EEG spikes.
The development, social adaptation and occupations of adults with a previous history of Rolandic seizures were found normal.
Since there are very few treatment methods focused on managing megalencephaly, future research is targeted at inhibiting mutation of the pathway. However, this next step could be met with several complications as understanding the underlying mechanism of the mutation is a difficult task. The genetic coding that initiates a single mutation is sporadic and patterns are hard to detect in many cases.
Even thought very little research has been done to create inhibitors of the PI3K-AKT pathway, several pharmaceutical companies have begun to focus their interests in designing a prevention method for this purpose.
Differential diagnosis is rarely difficult in adults. Onset is typically sudden with symptoms of horizontal diplopia. Limitations of eye movements are confined to abduction of the affected eye (or abduction of both eyes if bilateral) and the size of the resulting convergent squint or esotropia is always larger on distance fixation - where the lateral rectii are more active - than on near fixation - where the medial rectii are dominant. Abduction limitations which mimic VIth nerve palsy may result secondary to surgery, to trauma or as a result of other conditions such as myasthenia gravis or thyroid eye disease.
In children, differential diagnosis is more difficult because of the problems inherent in getting infants to cooperate with a full eye movement investigation. Possible alternative diagnosis for an abduction deficit would include:
1. Mobius syndrome - a rare congenital disorder in which both VIth and VIIth nerves are bilaterally affected giving rise to a typically 'expressionless' face.
2. Duane's syndrome - A condition in which both abduction and adduction are affected arising as a result of partial innervation of the lateral rectus by branches from the IIIrd oculomotor cranial nerve.
3. Cross fixation which develops in the presence of infantile esotropia or nystagmus blockage syndrome and results in habitual weakness of lateral rectii.
4. Iatrogenic injury. Abducens nerve palsy is also known to occur with halo orthosis placement.The resultant palsy is identified through loss of lateral gaze after application of the orthosis and is the most common cranial nerve injury associated with this device.
Claude's syndrome is a form of brainstem stroke syndrome characterized by the presence of an ipsilateral oculomotor nerve palsy, contralateral hemiparesis, contralateral ataxia, and contralateral hemiplegia of the lower face, tongue, and shoulder.
Claude's syndrome affects oculomotor nerve, red nucleus and brachium conjunctivum
Brain herniation frequently presents with abnormal posturing a characteristic positioning of the limbs indicative of severe brain damage. These patients have a lowered level of consciousness, with Glasgow Coma Scores of three to five. One or both pupils may be dilated and fail to constrict in response to light. Vomiting can also occur due to compression of the vomiting center in the medulla oblongata.
Foville's syndrome is caused by the blockage of the perforating branches of the basilar artery in the region of the brainstem known as the pons. Most frequently caused by vascular disease or tumors involving the dorsal pons.[3]
Structures affected by the infarct are the PPRF, nuclei of cranial nerves VI and VII, corticospinal tract, medial lemniscus, and the medial longitudinal fasciculus. There's involvement of the fifth to eighth cranial nerves, central sympathetic fibres (Horner syndrome) and horizontal gaze palsy.[3]