Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pulmonary veno-occlusive disease can only be well diagnosed with a lung biopsy. CT scans may show characteristic findings such as ground-glass opacities in centrilobular distribution, and mediastinal lymphadenopathy, but these findings are non-specific and may be seen in other conditions. However, pulmonary hypertension (revealed via physical examination), in the presence of pleural effusion (done via CT scan) usually indicates a diagnosis of pulmonary veno-occlusive disease. The prognosis indicates usually a 2-year (24 month) life expectancy after diagnosis.
Bronchoalveolar lavage (BAL) is a well-tolerated diagnostic procedure in ILD. BAL cytology analyses (differential cell counts) should be considered in the evaluation of patients with IPF at the discretion of the treating physician based on availability and experience at their institution. BAL may reveal alternative specific diagnoses: malignancy, infections, eosinophilic pneumonia, histiocytosis X, or alveolar proteinosis. In the evaluation of patients with suspected IPF, the most important application of BAL is in the exclusion of other diagnoses. Prominent lymphocytosis (>30%) generally allows excluding a diagnosis of IPF.
Spirometry classically reveals a reduction in the vital capacity (VC) with either a proportionate reduction in airflows, or increased airflows for the observed vital capacity. The latter finding reflects the increased lung stiffness (reduced lung compliance) associated with pulmonary fibrosis, which leads to increased lung elastic recoil.
Measurement of static lung volumes using body plethysmography or other techniques typically reveals reduced lung volumes (restriction). This reflects the difficulty encountered in inflating the fibrotic lungs.
The diffusing capacity for carbon monoxide (DL) is invariably reduced in IPF and may be the only abnormality in mild or early disease. Its impairment underlies the propensity of patients with IPF to exhibit oxygen desaturation with exercise which can also be evaluated using the 6-minute walk test (6MWT).
Terms such as ‘mild’, ‘moderate’, and ‘severe’ are sometimes used for staging disease and are commonly based on resting pulmonary function test measurements. However, there is no clear consensus regarding the staging of IPF patients and what are the best criteria and values to use. Mild-to-moderate IPF has been characterized by the following functional criteria:
- Forced Vital Capacity (FVC) of ≥50%
- DL of ≥30%
- 6MWT distance ≥150 meters.
For some types of chILD and few forms adult ILD genetic causes have been identified. These may be identified by blood tests. For a limited number of cases this is a definite advantage, as a precise molecular diagnosis can be done; frequently then there is no need for a lung biopsy. Testing is available for
Treatments for primary pulmonary hypertension such as prostacyclins and endothelin receptor antagonists can be fatal in people with PVOD due to the development of severe pulmonary edema, and worsening symptoms after initiation of these medications may be a clue to the diagnosis of pulmonary veno occlusive disease.
The definitive therapy is lung transplantation, though transplant rejection is always a possibility, in this measures must be taken in terms of appropriate treatment and medication.
If heart disease and lung disease have been excluded, a ventilation/perfusion scan is performed to rule out CTEPH. If unmatched perfusion defects are found, further evaluation by CT pulmonary angiography, right heart catheterization, and selective pulmonary angiography is performed.
If the echocardiogram is compatible with a diagnosis of pulmonary hypertension, common causes of pulmonary hypertension (left heart disease and lung disease) are considered and further tests are performed accordingly. These tests generally include electrocardiography (ECG), pulmonary function tests including lung diffusion capacity for carbon monoxide and arterial blood gas measurements, X-rays of the chest and high-resolution computed tomography (CT) scanning.
Chest x-rays of affected individuals typically reveal nonspecific alveolar opacities. Diagnosis is generally made by surgical or endoscopic biopsy of the lung, revealing the distinctive pathologic finding. The current gold standard of PAP diagnosis involves histopathological examination of alveolar specimens obtained from bronchoalveolar lavage and transbronchial lung biopsy.
Microscopically, the distal air spaces are filled with a granular, eosinophilic material that is positive with the PAS stain and the PAS diastase stain. The main histomorphologic differential diagnosis is pulmonary edema, which does not have dense bodies.
An ELISA to measure antibodies against GM-CSF has been validated for routine clinical diagnosis of autoimmune PAP.
The diagnosis of portopulmonary hypertension is based on hemodynamic criteria:
1. . Portal hypertension and/or liver disease (clinical diagnosis—ascites/varices/splenomegaly)
2. . Mean pulmonary artery pressure—MPAP > 25 mmHg at rest
3. . Pulmonary vascular resistance—PVR > 240 dynes s cm−5
4. . Pulmonary artery occlusion pressure— PAOP 12 mmHg where TPG = MPAP − PAOP.
The diagnosis is usually first suggested by a transthoracic echocardiogram, part of the standard pre-transplantation work-up. Echocardiogram estimated pulmonary artery systolic pressures of 40 to 50 mm Hg are used as a screening cutoff for PPH diagnosis, with a sensitivity of 100% and a specificity as high as 96%. The negative predictive value of this method is 100% but the positive predictive value is 60%. Thereafter, these patients are referred for pulmonary artery catheterization.
The limitations of echocardiography are related to the derivative nature of non-invasive PAP estimation. The measurement of PAP by echocardiogram is made using a simplified Bernoulli equation. High cardiac index and pulmonary capillary wedge pressures, however, may lead to false positives by this standard. By one institution’s evaluation, the correlation between estimated systolic PAP and directly measured PAP was poor, 0.49. For these reasons, right heart catheterization is needed to confirm the diagnosis.
Investigation is tailored towards the symptoms and signs. A proper and detailed history looking for the occupational exposures, and for signs of conditions listed above is the first and probably the most important part of the workup in patients with interstitial lung disease. Pulmonary function tests usually show a restrictive defect with decreased diffusion capacity (DLCO).
A lung biopsy is required if the clinical history and imaging are not clearly suggestive of a specific diagnosis or malignancy cannot otherwise be ruled out. In cases where a lung biopsy is indicated, a trans-bronchial biopsy is usually unhelpful, and a surgical lung biopsy is often required.
Clinically, IPH manifests as a triad of haemoptysis, diffuse parenchymal infiltrates on chest radiographs, and iron deficiency anaemia. It is diagnosed at an average age of 4.5 plus or minus 3.5 years, and it is twice as common in females. The clinical course of IPH is exceedingly variable, and most of the patients continue to have episodes of pulmonary haemorrhage despite therapy. Death may occur suddenly from acute pulmonary haemorrhage or after progressive pulmonary insufficiency resulting in chronic respiratory failure.
Following diagnosis, mean survival of patients with PPH is 15 months. The survival of those with cirrhosis is sharply curtailed by PPH but can be significantly extended by both medical therapy and liver transplantation, provided the patient remains eligible.
Eligibility for transplantation is generally related to mean pulmonary artery pressure (PAP). Given the fear that those PPH patients with high PAP will suffer right heart failure following the stress of post-transplant reperfusion or in the immediate perioperative period, patients are typically risk-stratified based on mean PAP. Indeed, the operation-related mortality rate is greater than 50% when pre-operative mean PAP values lie between 35 and 50 mm Hg; if mean PAP exceeds 40-45, transplantation is associated with a perioperative mortality of 70-80% (in those cases without preoperative medical therapy). Patients, then, are considered to have a high risk of perioperative death once their mean PAP exceeds 35 mm_Hg.
Survival is best inferred from published institutional experiences. At one institution, without treatment, 1-year survival was 46% and 5-year survival was 14%. With medical therapy, 1-year survival was 88% and 5-year survival was 55%. Survival at 5 years with medical therapy followed by liver transplantation was 67%. At another institution, of the 67 patients with PPH from 1652 total cirrhotics evaluated for transplant, half (34) were placed on the waiting list. Of these, 16 (48%) were transplanted at a time when 25% of all patients who underwent full evaluation received new livers, meaning the diagnosis of PPH made a patient twice as likely to be transplanted, once on the waiting list. Of those listed for transplant with PPH, 11 (33%) were eventually removed because of PPH, and 5 (15%) died on the waitlist. Of the 16 transplanted patients with PPH, 11 (69%) survived for more than a year after transplant, at a time when overall one-year survival in that center was 86.4%. The three year post-transplant survival for patients with PPH was 62.5% when it was 81.02% overall at this institution.
The first advance in the treatment of pulmonary alveolar proteinosis came in November 1960, when Dr. Jose Ramirez-Rivera at the Veterans' Administration Hospital in Baltimore applied repeated "segmental flooding" as a means of physically removing the accumulated alveolar material.
The standard treatment for PAP is whole-lung lavage, in which the lung is filled with sterile fluid with subsequent removal of the fluid along with the abnormal surfactant material. This is generally effective at improving PAP symptoms, often for a prolonged period of time. Since the mouse discovery noted above, the use of GM-CSF injections has also been attempted, with variable success. Lung transplantation can be performed in refractory cases.
The incidence of clinical HAPE in unacclimatized travelers exposed to high altitude (~) appears to be less than 1%. The U.S. Army Pike's Peak Research Laboratory has exposed sea-level-resident volunteers rapidly and directly to high altitude; during 30 years of research involving about 300 volunteers (and over 100 staff members), only three have been evacuated with suspected HAPE.
Corticosteroids are the mainstay of treatment of IPH, though they are controversial and lack clear evidence in their favour. They are thought to decrease the frequency of haemorrhage, while other studies suggest that they do not have any effect on the course or prognosis of this disease. In either case, steroid therapy has significant side effects. Small trials have investigated the use of other medications, but none has emerged as a clear standard of care. This includes immune modulators such as hydroxychloroquine, azathioprine, and cyclophosphamide. 6-mercaptopurine as a long-term therapy may prevent pulmonary haemorrhage. A 2007 scientific letter. reports preliminary success in preventing pulmonary haemorrhage with the anti-oxidant N-acetylcysteine.
ACD commonly is diagnosed postmortem, by a pathologist.
Sometimes ACD is diagnosed clinically. This is common when there is a family history of ACD, but rare otherwise. A clinical differential diagnosis of ACD excludes fetal atelectasis.
ACD is not detectable by prenatal imaging. However, some babies with ACD have associated congenital malformations that are detectable by imaging. The identification of genes involved in ACD offers the potential for prenatal testing and genetic counseling.
Pulmonary capillary hemangiomatosis (PCH) is a disease affecting the blood vessels of the lungs, where abnormal capillary proliferation and venous fibrous intimal thickening result in progressive increase in vascular resistance. It is a rare cause of pulmonary hypertension, and occurs predominantly in young adults. Together with pulmonary veno-occlusive disease, PCH comprises WHO Group I' causes for pulmonary hypertension. Indeed, there is some evidence to suggest that PCH and pulmonary veno-occlusive disease are different forms of a similar disease process.
Pulmonary capillary hemangiomatosis patients, families, and caregivers are encouraged to join the Registry NIH Rare Lung Diseases Consortium Contact Registry
Baylor College of Medicine in Houston, Texas has conducted ACD research since 2001.
To help understand factors that make some individuals susceptible to HAPE, the International HAPE Database was set up in 2004. The database is administered by APEX, a high altitude medical research charity. Individuals who have previously suffered from HAPE can register with this confidential database to help researchers study the condition.
Management has generally been reported to be conservative, though deaths have been reported.
- Removal from water
- Observation
- Diuretics and / or Oxygen when necessary
- Episodes are generally self-limiting in the absence of other medical problems
In rounded atelectasis (Folded lung or Blesovsky syndrome), an outer portion of the lung slowly collapses as a result of scarring and shrinkage of the membrane layers covering the lungs (pleura), which would show as visceral pleural thickening and entrapment of lung tissue. This produces a rounded appearance on x-ray that doctors may mistake for a tumor. Rounded atelectasis is usually a complication of asbestos-induced disease of the pleura, but it may also result from other types of chronic scarring and thickening of the pleura.
SIPE is estimated to occur in 1-2% of competitive open-water swimmers, with 1.4% of triathletes, 1.8% of combat swimmers and 1.1% of divers and swimmers reported in the literature.
Atelectasis may be an acute or chronic condition. In acute atelectasis, the lung has recently collapsed and is primarily notable only for airlessness. In chronic atelectasis, the affected area is often characterized by a complex mixture of airlessness, infection, widening of the bronchi (bronchiectasis), destruction, and scarring (fibrosis).
The true incidence of TRALI is unknown because of the difficulty in making the diagnosis and because of underreporting. It is estimated to occur in 1:1300 to 1:5000 transfusions of plasma-containing products. TRALI is the leading reported cause of death related to transfusion in the United States; more than 20 cases were reported per year from 2003 to 2005. The immune mediated form of TRALI occurs approximately once every 5000 transfusions and has a mortality of 6–9%.
Supportive care is the mainstay of therapy in TRALI. Oxygen supplementation is employed in all reported cases of TRALI and aggressive respiratory support is needed in 72 percent of patients. Intravenous administration of fluids, as well as vasopressors, are essential for blood pressure support. Use of diuretics, which are indicated in the management of transfusion associated circulatory overload (TACO), should be avoided in TRALI. Corticosteroids can be beneficial.