Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis is generally made by magnetic resonance imaging (MRI), particularly using a specific imaging technique known as a gradient-echo sequence MRI, which can unmask small or punctate lesions that may otherwise remain undetected. These lesions are also more conspicuous on FLAIR imaging compared to standard T2 weighing. FLAIR imaging is different from gradient sequences. Rather, it is similar to T2 weighing but suppresses free-flowing fluid signal. Sometimes quiescent CCMs can be revealed as incidental findings during MRI exams ordered for other reasons. Many cavernous hemangiomas are detected "accidentally" during MRIs searching for other pathologies. These "incidentalomas" are generally asymptomatic. In the case of hemorrhage, however, a CT scan is more efficient at showing new blood than an MRI, and when brain hemorrhage is suspected, a CT scan may be ordered first, followed by an MRI to confirm the type of lesion that has bled.
Sometimes the lesion appearance imaged by MRI remains inconclusive. Consequently neurosurgeons will order a cerebral angiogram or magnetic resonance angiogram (MRA). Since CCMs are low flow lesions (they are hooked into the venous side of the circulatory system), they will be angiographically occult (invisible). If a lesion is discernible via angiogram in the same location as in the MRI, then an arteriovenous malformation (AVM) becomes the primary concern.
Gradient-Echo T2WI magnetic resonance imaging (MRI) is most sensitive method for diagnosing cavernous hemangiomas. MRI is such a powerful tool for diagnosis, it has led to an increase in diagnosis of cavernous hemangiomas since the technology's advent in the 1980s. The radiographic appearance is most commonly described as "popcorn" or "mulberry"-shaped. Computed tomography (CT) scanning is not a sensitive or specific method for diagnosing cavernous hemangiomas. Angiography is typically not necessary, unless it is required to rule out other diagnoses. Additionally, biopsies can be obtained from tumor tissue for examination under a microscope. It is essential to diagnose cavernous hemangioma because treatments for this benign tumor are less aggressive than that of cancerous tumors, such as angiosarcoma. However, since MRI appearance is practically pathognomonic, biopsy is rarely needed for verification.
Some patients have a few or no histopathologic abnormalities. Histological examination of a biopsy may show an increase in the number and size of capillaries and veins (rarely lymphatics), dilated capillaries located in the deeper dermis, and hyperplasia and swollen endothelial cells with occasional dilated veins and venous lakes.
In the treatment of a brain cavernous hemangioma, neurosurgery is usually the treatment chosen. Research needs to be conducted on the efficacy of treatment with stereotactic radiation therapy, especially on the long-term. However, radiotherapy is still being studied as a form of treatment if neurosurgery is too dangerous due the location of the cavernoma. Genetic researchers are still working on determining the cause of the illness and the mechanism behind blood vessel formation. Clinical trials are being conducted to better assess when it is appropriate to treat a patient with this malformation and with what treatment method. Additionally, long term studies are being conducted because there is no information related to the long-term outlook of patients with cavernoma. A registry exists known as The International Cavernous Angioma Patient Registry collects information from patients diagnosed with cavernoma in order to facilitate discovery of non-invasive treatments.
The prognosis is favorable in most patients with an isolated cutaneous abnormality. In the majority of cases, both the vivid red marking and the difference in circumference of the extremities regress spontaneously during the first year of life. It is theorized that this may be due to the normal maturation process, with thickening of the epidermis and dermis. Improvements for some patients can continue for up to 10 years, while in other cases, the marbled skin may persist for the patient's lifetime.
One study reported an improvement in lesions in 46% of patients within 3 years. If CMTC persists into adulthood, it can result in complaints due to paresthesia, increased sensitivity to cold and pain, and the formation of ulcers.
Few reports included long-term follow up of CMTC into adolescence and adulthood. While about 50% of patients seem to show definite improvement in the reticular vascular pattern, the exact incidence and cause of persistent cases are unknown.
The incidence in the general population is roughly 0.5%, and clinical symptoms typically appear between 20 to 30 years of age. Once thought to be strictly congenital, these vascular lesions have been found to occur "de novo". It may appear either sporadically or exhibit autosomal dominant inheritance.
Despite the temporary nature of the vision loss, those experiencing amaurosis fugax are usually advised to consult a physician immediately as it is a symptom that may herald serious vascular events, including stroke. Restated, “because of the brief interval between the transient event and a stroke or blindness from temporal arteritis, the workup for transient monocular blindness should be undertaken without delay.” If the patient has no history of giant cell arteritis, the probability of vision preservation is high; however, the chance of a stroke reaches that for a hemispheric TIA. Therefore, investigation of cardiac disease is justified.
A diagnostic evaluation should begin with the patient's history, followed by a physical exam, with particular importance being paid to the ophthalmic examination with regards to signs of ocular ischemia. When investigating amaurosis fugax, an ophthalmologic consult is absolutely warranted if available. Several concomitant laboratory tests should also be ordered to investigate some of the more common, systemic causes listed above, including a complete blood count, erythrocyte sedimentation rate, lipid panel, and blood glucose level. If a particular cause is suspected based on the history and physical, additional relevant labs should be ordered.
If laboratory tests are abnormal, a systemic disease process is likely, and, if the ophthalmologic examination is abnormal, ocular disease is likely. However, in the event that both of these routes of investigation yield normal findings or an inadequate explanation, noninvasive duplex ultrasound studies are recommended to identify carotid artery disease. Most episodes of amaurosis fugax are the result of stenosis of the ipsilateral carotid artery. With that being the case, researchers investigated how best to evaluate these episodes of vision loss, and concluded that for patients ranging from 36–74 years old, "...carotid artery duplex scanning should be performed...as this investigation is more likely to provide useful information than an extensive cardiac screening (ECG, Holter 24-hour monitoring, and precordial echocardiography)." Additionally, concomitant head CT or MRI imaging is also recommended to investigate the presence of a “clinically silent cerebral embolism.”
If the results of the ultrasound and intracranial imaging are normal, “renewed diagnostic efforts may be made,” during which fluorescein angiography is an appropriate consideration. However, carotid angiography is not advisable in the presence of a normal ultrasound and CT.
If the medical history and the actual exam of the hemangioma look typical for PHACE Syndrome, more tests are ordered to confirm the diagnosis. These tests may include:
- Ultrasound
- Magnetic resonance imaging (MRI)
- Magnetic resonance angiography of the brain (MRA)
- Echocardiogram
- Eye exam by an eye doctor
- Other tests may be needed for diagnosis and treatment
A skin biopsy for the measurement of epidermal nerve fiber density is an increasingly common technique for the diagnosis of small fiber peripheral neuropathy. Physicians can biopsy the skin with a 3-mm circular punch tool and immediately fix the specimen in 2% paraformaldehyde lysine-periodate or Zamboni's fixative. Specimens are sent to a specialized laboratory for processing and analysis where the small nerve fibers are quantified by a neuropathologist to obtain a diagnostic result.
This skin punch biopsy measurement technique is called intraepidermal nerve fiber density (IENFD). The following table describes the IENFD values in males and females of a 3 mm biopsy 10-cm above the lateral malleolus (above ankle outer side of leg). Any value measured below the 0.05 Quantile IENFD values per age span, is considered a reliable positive diagnosis for Small Fiber Peripheral Neuropathy.
In terms of diagnosis of HNPP measuring nerve conduction velocity may give an indication of the presence of the disease.Other methods via which to ascertain the diagnosis of hereditary neuropathy with liability to pressure palsy are:
- Family history
- Genetic test
- Physical exam(lack of ankle reflex)
A thorough history is essential and should cover family history, diet; drug/toxin exposure social history, including tobacco and alcohol use; and occupational background, with details on whether similar cases exist among coworkers. Treatment of any chronic disease such as pernicious anemia should always be elucidated.
In most cases of nutritional/toxic optic neuropathy, the diagnosis may be obtained via detailed medical history and eye examination. Additionally, supplementary neurological imaging studies, such as MRI or enhanced CT, may be performed if the cause remains unclear.
When the details of the examination and history indicate a familial history of similar ocular or systemic disease, whether or not there is evidence of toxic or nutritional causes for disease, certain genetic tests may be required. Because there are several congenital causes of mitochondrial dysfunction, the patients history, examination, and radiological studies must be examined in order to determine the specific genetic tests required. For example, 90% of cases of Leber’s Hereditary Optic Neuropathy (LHON) are associated with three common mtDNA point mutations (m.3460G>A/MT-ND1, m.11778G>A/MT-ND4, m.14484T>C/MT-ND6) while a wider range of mtDNA mutations (MT-ND1, MT-ND5, MT-ND6; http://www.mitomap.org/) have been associated with overlapping phenotypes of LHON, MELAS, and Leigh syndrome.
Oral propranolol appears to be the most effective treatment for reducing the size of capillary hemangiomas in children and is more effective than placebo, observation without intervention, or oral corticosteroids.
The diagnosis of small fiber neuropathy often requires ancillary testing. Nerve conduction studies and electromyography are commonly used to evaluate large myelinated sensory and motor nerve fibers, but are ineffective in diagnosing small fiber neuropathies.
Quantitative sensory testing (QST) assesses small fiber function by measuring temperature and vibratory sensation. Abnormal QST results can be attributed to dysfunction in the central nervous system. Furthermore, QST is limited by a patient’s subjective experience of pain sensation. Quantitative sudomotor axon reflex testing (QSART) measures sweating response at local body sites to evaluate the small nerve fibers that innervate sweat glands.
Congenital hemangioma can be distinguished from infantile hemangioma because it is fully developed at birth. It forms during prenatal life and has reached its maximal size at birth. Congenital hemangioma can even be diagnosed in utero by prenatal ultrasound. Unlike IH, CH is more common in the extremities, has an equal sex distribution, and is solitary, with an average diameter of 5 cm. It commonly presents in the head and neck and in the lower extremities.
Congenital hemangioma are divided into 2 subgroups: the rapidly involuting congenital hemangiomas (RICHs) and the non-involuting congenital hemangiomas(NICHs).
The rapidly involuting congenital hemangioma, RICH, presents at birth as a solitary raised tumor with a central depression, scar, or ulceration surrounded by a rim of pallor. It is noted for its involution, which typically begins several weeks after birth and is completed no later than 14 months of age. After regression RICH may cause a residual deformity, such as atrophic skin and subcutaneous tissue. It mainly affects the limbs (52%), but also the head and neck region (42%) and the trunk (6%).
The non-involuting congenital hemangioma, NICH, presents as a solitary, well-circumscribed reddish-pink to purple plaque with central telangiectasia and hypopigmented rim. In contrast to RICH, NICH does not involute and rarely ulcerates. It persists into late childhood and can even mimic a vascular malformation by growing commensurately with the child. Although NICH can resemble RICH in its external appearance, it can be differentiated from RICH by a greater elevation and coarse telangiectases. It mainly affects the head and neck region (43%), but also the limbs (38%) and the trunk (19%).
Surgical resection for congenital hemangiomas is rarely needed, because RICH undergoes postnatal regression and NICH is benign and often asymptomatic. Resection may be indicated to improve the appearance of the affected area, as long as the surgical scar is less noticeable than the lesion. Other indications are problematic ulcers with persistent bleeding or chronic infection.
Although most NICH lesions are non-problematic and do not cause significant deformity, the threshold for resection of NICH is lower, because it neither involutes, nor responds to pharmacotherapy. RICH tumors are observed until involution is completed. Involuted RICH may leave behind atrophic tissue, which can be reconstructed with autologous grafts. It is often best to postpone excision until regression is complete.
There are effective pharmacologic treatments, which include intralesional corticosteroid injection, systemic corticosteroid injection, interferon α-2a or α-2b and angiogenic inhibitors. The use of corticosteroids leads to accelerated regression in 30%, stabilization of growth in 40%, lightening of color and softening of the tumor. However, 30% shows minimal or no response. Another drug treatment is interferon α-2a or α-2b. It is often used for patients who did not respond to corticosteroids. Although the response rate is much slower, it has been successful for 80% of children treated. The most serious side effect of interferon is a spastic diplegia. Other therapeutic options are embolization and pulsed-dye laser, which improves residual telangiectasias in RICH and in NICH.
Kaposiform hemangioendothelioma (KHE) is a rare vascular neoplasm that is locally aggressive but without metastatic potential. It occurs particularly in the skin, deep soft tissue, retroperitoneum, mediastinum, and rarely in bone. Although lesions occur solitary, they often involve large areas of the body, such as the head/neck region (40%), trunk (30%), or extremity (30%).
Usually, it is present at birth as a flat, reddish-purple, tense and edematous lesion.
Although half of lesions are congenital, 58% of KHE develop during infancy, 32% between age 1 and 10 years (32%) and 10% after 11 years of age. Moreover, adult onset has been described too with mainly males being affected. Both sexes are affected equally in children.
Lesions are often greater than 5 cm in diameter and can cause visible deformity and pain. During early childhood, KHE may enlarge and after 2 years of age, it may partially regress. Though, it usually persists longterm. In addition, 50% of patients suffer from coagulopathy due to thrombocytopenia (<25,000/mm3), presenting with petechiae and bleeding. This is called the Kasabach-Merritt Phenomenon, which is caused by trapping of platelets and other clotting factors within the tumor. Kasabach-Merritt Phenomenon is less likely in patients with lesions less than 8 cm. As two-thirds of adult-onset KHE tumors are less than 2 cm, KHE in adults is rarely associated with Kasabach-Merritt Phenomenon.
Patients with KHE and Kasabach-Merritt Phenomenon present with petechiae and ecchymosis.
Most KHE tumors are diffuse involving multiple tissue planes and important structures. Resection of KHE is thus often difficult. Treatment of kaposiform hemangioendothelioma is therefore medical. The primary drug is interferon alfa, which is successful in 50% of children. Another option is vincristine, which has lots of side-effects, but has a response rate of 90%. Drug therapy is often used in shrinking the tumor and treating the coagulopathy. However, many of these kaposiform hemangioendotheliomas do not completely regress and remain as a much smaller asymptomatic tumor. However, KHE still has a high mortality rate of 30%. Although complete surgical removal with a large margin has the best reported outcome, it is usually not done because of the risk of bleeding, extensiveness, and the anatomic site of the lesion.
Operative management may be possible for small or localized lesions. Removal of larger areas also may be indicated for symptomatic patients or for patients who have failed farmacotherapy. Resection is not required for lesions that are not causing functional problems, because KHE is benign and because resection could cause deformity.
Electromyography (EMG) is a medical test performed to evaluate and record the electrical activity (electromyogram) produced by skeletal muscles using an instrument called electromyograph. In axonotmesis, EMG changes (2 to 3 weeks after injury) in the denervated muscles include:
1. Fibrillation potentials (FP)
2. Positive sharp waves
If the diagnostic workup reveals a systemic disease process, directed therapies to treat that underlying cause should be initiated. If the amaurosis fugax is caused by an atherosclerotic lesion, aspirin is indicated, and a carotid endarterectomy considered based on the location and grade of the stenosis. Generally, if the carotid artery is still patent, the greater the stenosis, the greater the indication for endarterectomy. "Amaurosis fugax appears to be a particularly favorable indication for carotid endarterectomy. Left untreated, this event carries a high risk of stroke; after carotid endarterectomy, which has a low operative risk, there is a very low postoperative stroke rate." However, the rate of subsequent stroke after amaurosis is significantly less than after a hemispheric TIA, therefore there remains debate as to the precise indications for which a carotid endarterectomy should be performed. If the full diagnostic workup is completely normal, patient observation is recommended.
EMG test is often performed together with another test called nerve conduction study, which measures the conducting function of nerves. NCV study shows loss of nerve conduction in the distal segment (3 to 4 days after injury). According to NCV study, in axonotmesis there is an absence of distal sensory-motor responses.
The surgical treatment involves the resection of the extracranial venous package and ligation of the emissary communicating vein. In some cases of SP, surgical excision is performed for cosmetic reasons. The endovascular technique has been described by transvenous approach combined with direct puncture and the recently endovascular embolization with Onyx.
A variety of methods may be used to diagnose axillary nerve palsy. The health practitioner may examine the shoulder for muscle atrophy of the deltoid muscle. Furthermore, a patient can also be tested for weakness when asked to raise the arm. The deltoid extension lag sign test is one way to evaluate the severity of the muscle weakness. During this test, the physician stands behind the patient and uses the patient's wrist to elevate the arm. Then, the patient is told to hold this position without the doctor's assistance. If the patient cannot hold this position on their own and an angular drop occurs, the angular lag is observed as an indicator of axillary nerve palsy. When the shoulder is at its maximum extension, only the posterior area of the deltoid muscle and the axillary nerve are working to raise the arm. Therefore, no other muscles can provide compensation, which allows the test to be an accurate measure of the axillary nerve’s dysfunction.
Additional testing includes electromyography (EMG) and nerve conduction tests. However, these should not be done right after the injury because results will be normal. These tests must be executed weeks after the initial injury and onset of symptoms. An MRI (magnetic resonance imaging) or X-Ray may also be done by a doctor.
The diagnostic workup is directed by the presenting signs and symptoms, and can involve:
- blood counts, clotting studies, and other laboratory testing
- imaging tests (ultrasound, CT scan, MRI, sometimes angiography, and rarely nuclear medicine scans)
- biopsy of the tumor.
Patients uniformly show severe thrombocytopenia, low fibrinogen levels, high fibrin degradation products (due to fibrinolysis), and microangiopathic hemolysis.
Due to its overwhelming incidence on the gingiva, the condition is often associated with two other diseases, though not because they occur together. Instead, the three are associated with each other because they appear frequently on gingiva—peripheral giant cell granuloma and peripheral ossifying fibroma. Detailed analysis can be used to distinguish these conditions.
Diagnosis is clinical and initially consists of ruling out more common conditions, disorders, and diseases, and usually begins at the general practitioner level. A doctor may conduct a basic neurological exam, including coordination, strength, reflexes, sensation, etc. A doctor may also run a series of tests that include blood work and MRIs.
From there, a patient is likely to be referred to a neurologist or a neuromuscular specialist. The neurologist or specialist may run a series of more specialized tests, including needle electromyography EMG/ and nerve conduction studies (NCS) (these are the most important tests), chest CT (to rule out paraneoplastic) and specific blood work looking for voltage-gated potassium channel antibodies, acetylcholine receptor antibody, and serum immunofixation, TSH, ANA ESR, EEG etc. Neuromyotonia is characterized electromyographically by doublet, triplet or multiplet single unit discharges that have a high, irregular intraburst frequency. Fibrillation potentials and fasciculations are often also present with electromyography.
Because the condition is so rare, it can often be years before a correct diagnosis is made.
NMT is not fatal and many of the symptoms can be controlled. However, because NMT mimics some symptoms of motor neuron disease (ALS) and other more severe diseases, which may be fatal, there can often be significant anxiety until a diagnosis is made. In some rare cases, acquired neuromyotonia has been misdiagnosed as amyotrophic lateral sclerosis (ALS) particularly if fasciculations may be evident in the absence of other clinical features of ALS. However, fasciculations are rarely the first sign of ALS as the hallmark sign is weakness. Similarly, multiple sclerosis has been the initial misdiagnosis in some NMT patients. In order to get an accurate diagnosis see a trained neuromuscular specialist.
Usually the hemangioma requires medical therapy. The child may need other therapies, depending on what other organs or structures are involved.
Detection of this type of neuropathy has concentrated mostly on detecting presence of antibodies because the antibodies are the main cause for the disease. Anti-MAG antibodies can be readily detected in a patient’s sera using various types of assays, but mainly an ELISA has been shown to be most effective. There are also various biological indicators, such as elevated cerebral spinal fluid proteins and elevated IgM monoclonal levels. These can also be tested either by drawing serum from a patient or by drawing spinal fluid from a spinal tap and testing using an assay or blot.