Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hypoplastic right heart syndrome is less common than hypoplastic left heart syndrome which occurs in 4 out of every 10,000 births. [3].
This rare anomaly requires prenatal diagnosis since it needs immediate and emergency treatment. Pregnant women whose pregnancy is complicated with this anomaly should be referred to a level 3 hospital with pediatric cardiology and pediatric cardiothoracic surgical team.[3]
It can be associated with aortic stenosis.
A VSD can be detected by cardiac auscultation. Classically, a VSD causes a pathognomonic holo- or pansystolic murmur. Auscultation is generally considered sufficient for detecting a significant VSD. The murmur depends on the abnormal flow of blood from the left ventricle, through the VSD, to the right ventricle. If there is not much difference in pressure between the left and right ventricles, then the flow of blood through the VSD will not be very great and the VSD may be silent. This situation occurs a) in the fetus (when the right and left ventricular pressures are essentially equal), b) for a short time after birth (before the right ventricular pressure has decreased), and c) as a late complication of unrepaired VSD. Confirmation of cardiac auscultation can be obtained by non-invasive cardiac ultrasound (echocardiography). To more accurately measure ventricular pressures, cardiac catheterization, can be performed.
With a series of operations or even a heart transplant, a newborn can be treated but not be cured. Young individuals who have undergone reconstructive surgery must refer to a cardiologist who is experienced in congenital heart diseases, "Children with HLHS are at an increased level for developing endocarditis." Kids that have been diagnosed with HRHS must limit the physical activity they participate in to their own endurance level.
A number of classification systems exist for congenital heart defects. In 2000 the International Congenital Heart Surgery Nomenclature was developed to provide a generic classification system.
Although there are several classifications for VSD, the most accepted and unified classification is that of Congenital Heart Surgery Nomenclature and Database Project.
The classification is based on the location of the VSD on the right ventricular surface of the inter ventricular septum and is as follows:
Sometimes CHD improves without treatment. Other defects are so small that they do not require any treatment. Most of the time CHD is serious and requires surgery and/or medications. Medications include diuretics, which aid the body in eliminating water, salts, and digoxin for strengthening the contraction of the heart. This slows the heartbeat and removes some fluid from tissues. Some defects require surgical procedures to restore circulation back to normal and in some cases, multiple surgeries are needed.
Interventional cardiology now offers patients minimally invasive alternatives to surgery for some patients. The Melody Transcatheter Pulmonary Valve (TPV), approved in Europe in 2006 and in the U.S. in 2010 under a Humanitarian Device Exemption (HDE), is designed to treat congenital heart disease patients with a dysfunctional conduit in their right ventricular outflow tract (RVOT). The RVOT is the connection between the heart and lungs; once blood reaches the lungs, it is enriched with oxygen before being pumped to the rest of the body. Transcatheter pulmonary valve technology provides a less-invasive means to extend the life of a failed RVOT conduit and is designed to allow physicians to deliver a replacement pulmonary valve via a catheter through the patient’s blood vessels.
Most patients require lifelong specialized cardiac care, first with a pediatric cardiologist and later with an adult congenital cardiologist. There are more than 1.8 million adults living with congenital heart defects.
When treated early, that is, before the onset of pulmonary hypertension, a good outcome is possible in patients with Shone’s syndrome. However, other surgical methods can be employed depending upon the patient’s medical background. The single most important determinant of poor outcome during the surgical management of patients with Shone's syndrome is the degree of involvement of the mitral valve and the presence of secondary pulmonary hypertension.
Physical examination
The physical examination is often unremarkable, although an arrhythmia characterized by premature beats may be detected.
Electrocardiogram:
An ECG often shows premature ventricular complexes (PVCs). These typically have an upright morphology on lead II (left bundle branch morphology). This occurs as the ectopic impulses usually arise in the right ventricle. In some case, the ECG may be normal. This is due to the intermittent nature of ventricular arrhythmias, and means that the diagnosis should not be excluded on the basis of a normal ECG.
Holter monitor:
A Holter monitor allows for 24-hour ambulatory ECG monitoring. It facilitates quantification of the frequency and severity of ventricular ectopy, and is important in the management of affected dogs. Boxer breeders are encouraged to Holter their breeding stock annually to screen out affected dogs.
Genetic test:
A genetic test for Boxer cardiomyopathy is now commercially available. The genetic test is not yet accepted as a definitive test and additional diagnostic testing continues to be essential to characterize the phenotype, and to help direct therapeutic interventions.
Echocardiogram:
Echocardiography is recommended to determine if structural heart disease is present. A small percentage of dogs have evidence of myocardial systolic dysfunction, and this may affect the long-term prognosis.
The Canadian Cardiovascular Society (CCS) recommends surgical intervention for these indications:
- Limited exercise capacity (NYHA III-IV)
- Increasing heart size (cardiothoracic ratio greater than 65%)
- Important cyanosis (resting oxygen saturation less than 90% - level B)
- Severe tricuspid regurgitation with symptoms
- Transient ischemic attack or stroke
The CCS further recommends patients who require operation for Ebstein's anomaly should be operated on by congenital heart surgeons who have substantial specific experience and success with this operation. Every effort should be made to preserve the native tricuspid valve.
BAV may become calcified later in life, which may lead to varying degrees of severity of aortic stenosis that will manifest as murmurs. If the leaflets do not close correctly, aortic regurgitation can occur. If these become severe enough, they may require heart surgery.The heart is put under more stress in order to either pump more blood through a stenotic valve or attempt to circulate regurgitation blood through a leaking valve.
One of the most notable associations with BAV is the tendency for these patients to present with ascending aortic aneurysmal lesions.
The extracellular matrix of the aorta in patients with BAV shows marked deviations from that of the normal tricuspid aortic valve.
It is currently believed that an increase in the ratio of MMP2 (Matrix Metalloproteinases 2) to TIMP1 (Tissue Inhibitor Metalloproteinases 1) may be responsible for the abnormal degradation of the valve matrix and therefore lead to aortic dissection and aneurysm. However, other studies have also shown MMP9 involvement with no differences in TIMP expression. The size of the proximal aorta should be evaluated carefully during the workup. The initial diameter of the aorta should be noted and annual evaluation with CT scan, or MRI to avoid ionizing radiation, should be recommended to the patient; the examination should be conducted more frequently if a change in aortic diameter is seen. From this monitoring, the type of surgery that should be offered to the patient can be determined based on the change in size of the aorta.
Coarctation of the aorta (a congenital narrowing in the region of the ductus arteriosus) has also been associated with BAV.
MR Imaging is best suited to evaluate patients with Shone's complex. Routine blood tests should be done prior to cardiac catheterization. The surgeons will repair the mitral valve and al the partial surgical removal of supramitral ring is done. This surgical method is preferred to the valve replacement procedure.
Classifying cardiac lesions in infants is quite difficult, and accurate diagnosis is essential. The diagnosis of Shone’s complex requires an ultrasound of the heart (echocardiogram) and a cardiac catheterization procedure, that is, insertion of a device through blood vessels in the groin to the heart that helps identify heart anatomy.
The following table includes the main types of valvular stenosis and regurgitation. Major types of valvular heart disease not included in the table include mitral valve prolapse, rheumatic heart disease and endocarditis.
A bicuspid aortic valve can be associated with a heart murmur located at the right second intercostal space. Often there will be differences in blood pressures between upper and lower extremities. The diagnosis can be assisted with echocardiography or magnetic resonance imaging (MRI). Four-dimensional magnetic resonance imaging (4D MRI) is a technique that defines blood flow characteristics and patterns throughout the vessels, across valves, and in compartments of the heart. Four-dimensional imaging enables accurate visualizations of blood flow patterns in a three-dimensional (3D) spatial volume, as well as in a fourth temporal dimension. Current 4D MRI systems produces high-resolution images of blood flow in just a single scan session.
Ebstein's cardiophysiology typically presents as an (antidromic) AV reentrant tachycardia with associated pre-excitation. In this setting, the preferred medication treatment agent is procainamide. Since AV-blockade may promote conduction over the accessory pathway, drugs such as beta blockers, calcium channel blockers, and digoxin are contraindicated.
If atrial fibrillation with pre-excitation occurs, treatment options include procainamide, flecainide, propafenone, dofetilide, and ibutilide, since these medications slow conduction in the accessory pathway causing the tachycardia and should be administered before considering electrical cardioversion. Intravenous amiodarone may also convert atrial fibrillation and/or slow the ventricular response.
A doctor will listen to the heart with stethoscope. A "tumor plop" (a sound related to movement of the tumor), abnormal heart sounds, or a murmur similar to the mid-diastolic rumble of mitral stenosis may be heard. These sounds may change when the patient changes position.
Right atrial myxomas rarely produce symptoms until they have grown to be at least 13 cm (about 5 inches) wide.
Tests may include:
- Echocardiogram and Doppler study
- Chest x-ray
- CT scan of chest
- Heart MRI
- Left heart angiography
- Right heart angiography
- ECG—may show atrial fibrillation
Blood tests:
A FBC may show anemia and increased WBCs (white blood cells). The erythrocyte sedimentation rate (ESR) is usually increased.
Patients who are diagnosed with AAOCA at or before age 30 years are eligible for this study. They should have otherwise normal heart or only minor defects such as Atrial septal defect, Ventricular septal defect, Patent ductus arteriosus, bicuspid aortic valve, mild pulmonary stenosis etc.
Patients who have other major heart problems that require operations are currently not included in this Cohort study. Any other problems with coronary arteries are also not included.
The condition itself does not need to be treated, but rather the underlying cause requires correction. Depending on the etiology the gallop rhythm may resolve spontaneously.
DORV affects between 1% and 3% of people born with congenital heart defects.
Chromosomal abnormalities were reported in about 40% of reported cases in the medical literature.
The Registry has been enrolling new patients from participating institutions that are member of the Congenital Heart Surgeons' Society. Hospitals from across North America continue to join the study group and enroll patients. Over 140 patients with AAOCA have been enrolled by June 2011, making it the largest cohort ever assembled of this anomaly.
Although a myxoma is not cancer, complications are common. Untreated, a myxoma can lead to an embolism (tumor cells breaking off and traveling with the bloodstream), which can block blood flow. Myxoma fragments can move to the brain, eye, or limbs.
If the tumor grows inside the heart, it can block blood flow through the mitral valve and cause symptoms of mitral stenosis or mitral regurgitation. This may require emergency surgery to prevent sudden death.
The evaluation of individuals with valvular heart disease who are or wish to become pregnant is a difficult issue. Issues that have to be addressed include the risks during pregnancy to the mother and the developing fetus by the presence of maternal valvular heart disease as an intercurrent disease in pregnancy.
Normal physiological changes during pregnancy require, on average, a 50% increase in circulating blood volume that is accompanied by an increase in cardiac output that usually peaks between the midportion of the second and third trimesters. The increased cardiac output is due to an increase in the stroke volume, and a small increase in heart rate, averaging 10 to 20 beats per minute. Additionally uterine circulation and endogenous hormones cause systemic vascular resistance to decrease and a disproportionately lowering of diastolic blood pressure causes a wide pulse pressure. Inferior vena caval obstruction from a gravid uterus in the supine position can result in an abrupt decrease in cardiac preload, which leads to hypotension with weakness and lightheadedness. During labor and delivery cardiac output increases more in part due to the associated anxiety and pain, as well as due to uterine contractions which will cause an increases in systolic and diastolic blood pressure.
Valvular heart lesions associated with high maternal and fetal risk during pregnancy include:
1. Severe aortic stenosis with or without symptoms
2. Aortic regurgitation with NYHA functional class III-IV symptoms
3. Mitral stenosis with NYHA functional class II-IV symptoms
4. Mitral regurgitation with NYHA functional class III-IV symptoms
5. Aortic and/or mitral valve disease resulting in severe pulmonary hypertension (pulmonary pressure greater than 75% of systemic pressures)
6. Aortic and/or mitral valve disease with severe LV dysfunction (EF less than 0.40)
7. Mechanical prosthetic valve requiring anticoagulation
8. Marfan syndrome with or without aortic regurgitation
In individuals who require an artificial heart valve, consideration must be made for deterioration of the valve over time (for bioprosthetic valves) versus the risks of blood clotting in pregnancy with mechanical valves with the resultant need of drugs in pregnancy in the form of anticoagulation.
Current treatment options for Boxer cardiomyopathy are largely restricted to the use of oral anti-arrhythmic medications. The aim of therapy is to minimize ventricular ectopy, eliminate syncopal episodes, and prevent sudden cardiac death. A number of medications have been used for this purpose, including atenolol, procainamide, sotalol, mexiletine, and amiodarone. Combinations can also be used. Sotalol is probably the most commonly used antiarrhythmic at this time. It has been demonstrated that sotalol alone, or a combination of mexiletine and atenolol, results in a reduction in the frequency and complexity of ventricular ectopy. It is likely that these medications also reduce syncopal episodes, and it is hoped this extends to a reduced risk of sudden death. Consequently, antiarrhythmic therapy is typically recommended by veterinary cardiologists for Boxer dogs with ARVC. Although relatively rare, oral antiarrhythmic medications may be proarrhythmic in some dogs; consequently, appropriate monitoring and follow-up is recommended.
The ideal therapy for Boxer cardiomyopathy would be implantation of an implantable cardioverter-defibrillator (ICD). This has been attempted in a limited number of dogs. Unfortunately, ICDs are programmed for humans and the algorithms used are not appropriate for dogs, increasing the risk of inappropriate shocks. In the future, reprogramming of ICDs may allow them to emerge as a viable option in the treatment for Boxer cardiomyopathy.
Heart valve dysplasia is a congenital heart defect which affects the aortic, pulmonary, mitral, and tricuspid heart valves. Dysplasia of the mitral and tricuspid valves can cause leakage of blood or stenosis.
Dysplasia of the mitral and tricuspid valves - also known as the atrioventricular (AV) valves - can appear as thickened, shortened, or notched valves. The chordae tendinae can be fused or thickened. The papillary muscles can be enlarged or atrophied. The cause is unknown, but genetics play a large role. Dogs and cats with tricuspid valve dysplasia often also have an open foramen ovale, an atrial septal defect, or inflammation of the right atrial epicardium. In dogs, tricuspid valve dysplasia can be similar to Ebstein's anomaly in humans.
Mitral valve stenosis is one of the most common congenital heart defects in cats. In dogs, it is most commonly found in Great Danes, German Shepherd Dogs, Bull Terriers, Golden Retrievers, Newfoundlands, and Mastiffs. Tricuspid valve dysplasia is most common in the Old English Sheepdog, German Shepherd Dog, Weimaraner, Labrador Retriever, Great Pyrenees, and sometimes the Papillon. It is inherited in the Labrador Retriever.
The disease and symptoms are similar to progression of acquired valve disease in older dogs. Valve leakage leads to heart enlargement, arrhythmias, and congestive heart failure. Heart valve dysplasia can be tolerated for years or progress to heart failure in the first year of life. Diagnosis is with an echocardiogram. The prognosis is poor with significant heart enlargement.
S3 can also be due to tricuspid regurgitation, and could indicate hypertensive heart disease.
In conditions affecting the pericardium or diseases that primarily affect the heart muscle (restrictive cardiomyopathies) a similar sound can be heard, but is usually more high-pitched and is called a 'pericardial knock'.
The S3 can also be confused with a widely split S2, or a mitral opening snap, but these sounds are typically of much higher pitch and occur closer to the onset of S2.
DORV occurs in multiple forms, with variability of great artery position and size, as well as of ventricular septal defect (VSD) location. It can occur with or without transposition of the great arteries. The clinical manifestations are similarly variable, depending on how the anatomical defects affect the physiology of the heart, in terms of altering the normal flow of blood from the RV and left ventricle (LV) to the aorta and pulmonary artery. For example: