Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
In laboratory animals, prevention includes a low-stress environment, an adequate amount of nutritional feed, and appropriate sanitation measurements. Because animals likely ingest bacterial spores from contaminated bedding and feed, regular cleaning is a helpful method of prevention. No prevention methods are currently available for wild animal populations.
It is done through isolation of a bacteria from chickens suspected to have history of coryza and clinical finds from infected chickens also is used in the disease diagnosis. Polymerase chain reaction is a reliable means of diagnosis of the disease
Currently, antibiotic drugs such as penicillin or tetracycline are the only effective methods for disease treatment. Within wild populations, disease control consists of reducing the amount of bacterial spores present in the environment. This can be done by removing contaminated carcasses and scat.
Common clinical signs and symptoms of Whipple's disease include diarrhea, steatorrhea, abdominal pain, weight loss, migratory arthropathy, fever, and neurological symptoms. Weight loss and diarrhea are the most common symptoms that lead to identification of the process, but may be preceded by chronic, unexplained, relapsing episodes of non-destructive seronegative arthritis, often of large joints.
Diagnosis is made by biopsy, usually by duodenal endoscopy, which reveals PAS-positive macrophages in the lamina propria containing non-acid-fast gram-positive bacilli. Immunohistochemical staining for antibodies against "T. whipplei" has been used to detect the organism in a variety of tissues, and a PCR-based assay is also available. PCR can be confirmatory if performed on blood, vitreous fluid, synovial fluid, heart valves, or cerebrospinal fluid. PCR of saliva, gastric or intestinal fluid, and stool specimens is highly sensitive, but not specific enough, indicating that healthy individuals can also harbor the causative bacterium without the manifestation of Whipple's disease, but that a negative PCR is most likely indicative of a healthy individual.
Endoscopy of the duodenum and jejunum can reveal pale yellow shaggy mucosa with erythematous eroded patches in patients with classic intestinal Whipple's disease, and small bowel X-rays may show some thickened folds. Other pathological findings may include enlarged mesenteric lymph nodes, hypercellularity of lamina propria with "foamy macrophages", and a concurrent decreased number of lymphocytes and plasma cells, per high power field view of the biopsy.
A D-Xylose test can be performed, which is where the patient will consume 4.5g of D-xylose, a sugar, by mouth. The urine excretion of D-Xylose is then measured after 5 hours. The majority of D-Xylose is absorbed normally, and should be found in the urine. If the D-Xylose is found to be low in the urine, this suggests an intestinal malabsorption problem such as bacterial overgrowth of the proximal small intestine, Whipple's Disease, or an autoimmune with diseases such as Celiac's Disease (allergy to gluten) or Crohn's Disease (autoimmune disease affecting the small intestine). With empiric antibiotic treatment after an initial positive D-Xylose test, and if a follow-up D-Xylose test is positive (decreased urine excretion) after antibiotic therapy, then this would signify it is not bacterial overgrowth of the proximal small intestine. Since Whipple's disease is so rare, a follow-up positive D-Xylose test more likely indicates a non-infectious etiology and more likely an autoimmune etiology. Clinical correlation is recommended to rule out Whipple's disease.
Prevention is through use of Stock coryza-free birds. In other areas culling of the whole flock is a good means of the disease control. Bacterin also is used at a dose of two to reduce brutality of the disease. Precise exposure has also has been used but it should be done with care. Vaccination of the chicks is done in areas with high disease occurrence. Treatment is done by using antibiotics such as erythromycin, Dihydrostreptomycin, Streptomycin sulphonamides, tylosin and Flouroquinolones .
Treatment is with penicillin, ampicillin, tetracycline, or co-trimoxazole for one to two years. Any treatment lasting less than a year has an approximate relapse rate of 40%. Recent expert opinion is that Whipple's disease should be treated with doxycycline with hydroxychloroquine for 12 to 18 months. Sulfonamides (sulfadiazine or sulfamethoxazole) may be added for treatment of neurological symptoms.
Pacheco's disease is an acute and often lethal infectious disease in psittacine birds. The disease is caused by a group of herpesviruses, "Psittacid herpesvirus 1" (PsHV-1), which consists of four genotypes. Birds which do not succumb to Pacheco's disease after infection with the virus become asymptomatic carriers that act as reservoirs of the infection. These persistently infected birds, often Macaws, Amazon parrots and some species of conures, shed the virus in feces and in respiratory and oral secretions. Outbreaks can occur when stress causes healthy birds who carry the virus to shed it. Birds generally become infected after ingesting the virus in contaminated material, and show signs of the disease within several weeks.
The main sign of Pacheco's disease is sudden death, sometimes preceded by a short, severe illness. If a bird survives Pacheco's disease following infection with PsHV-1 genotypes 1, 2 or 3, it may later develop internal papilloma disease in the gastrointestinal tract.
Susceptible parrot species include the African gray parrot, and cockatoo. Native Australian birds, such as the eclectus parrot, Bourke's parrot, and budgerigar are susceptible to Pacheco's disease, although the disease itself has not been found in Australia.
There is no vaccine for SVD. Prevention measures are similar to those for foot-and-mouth disease: controlling animals imported from infected areas, and sanitary disposal of garbage from international aircraft and ships, and thorough cooking of garbage. Infected animals should be placed in strict quarantine. Eradication measures for the disease include quarantining infected areas, depopulation and disposal of infected and contact pigs, and cleaning and disinfecting
contaminated premises.
Recovery is most likely if it is spotted within the first 24–48 hours, and you should seek veterinary advice—a vet may choose to give the animal drugs.
The sick animal should be kept in a cage by itself so that others do not catch the disease—wet tail can be very contagious so sanitize all objects the animal has come in contact with (wheel, food dish, huts, etc.).
If the animal doesn't want to eat, then dry, unflavored oats can be hand fed, which can also help with the diarrhea. The animal should only be fed dry foods, any foods with a high water content should be avoided.
If the animal has an unclean or matted rear-end, this should not be remedied using a bath in water—instead a q-tip (cotton bud) or cotton ball can be used to very gently clean the animal's rear end to avoid discomfort or rashes.
If the animal is not drinking, hydration can be aided by scruffing (i.e. very gently holding the rodent by the extra skin on the back of the neck) the animal so that they open their mouth; then in small, short intervals, water can be provided with a 1 ml syringe. It is very important that this is done slowly, to avoid getting water down the animal's wind pipe. Unflavored pedialyte can be purchased from a grocery store and can be very helpful with wet tail. If feeding is also an issue, a suggested aide is to feed extremely small amounts of no garlic, no onion, no added sugar mashed baby food, and administered using the same scruffing method, and again at a very slow pace.
There are numerous steps one has to take to try to manage the disease as best as possible. The aim is at prevention because once the pathogen reaches the cherry trees, disease will surely ensue and there is no cure or remedy to prevent the loss of fruit production as well as the ultimate death of the tree.
The first approach, which is the best approach at an effective management practice would be to eradicate or severely damage the Mountain and Cherry Leafhopper population because the leafhoppers are the number one vectors for this pathogen. To do this, pesticides (i.e. acephate, bifenthrin, cyfluthrin) could be applied or biological control (predators of the leafhopper) could be used. There should be a pre-season application of control measures as well as a post-season application. This is to maximize the effort at controlling both types of leafhoppers (Cherry and Mountain), thus cutting down the starting inoculum at both stages in the life cycle.
Infections are treated with antibiotics, particularly doxycycline, and the acute symptoms appear to respond to these drugs.
In 2010, EBC-46, a drug which cures facial tumours in dogs, cats, and horses, was proposd as a cure for DFTD.
Vaccination with irradiated cancer cells has not proven successful.
A primary research report in 2011 has suggested that picking a genetically diverse breeding stock, defined by the genome sequence, may help with for conservation efforts.
As of 2011, there was ongoing support for a research team of David Phalen and colleagues to investigate chemotherapeutic agents against DFTD.
In 2013, a study using mice as a model for Tasmanian devils suggested that a DFTD vaccine or treatment could be beneficial. In 2015, a study which mixed dead DFTD cells with an inflammatory substance stimulated an immune response in five out of six devils injected with the mixture, engendering for a vaccine against DFTD. Field testing of the potential vaccine is being undertaken as a collaborative project between the Menzies Institute for Medical Research and the Save the Tasmanian Devil Program under the Wild Devil Recovery program, and aims to test the immunisation protocol as a tool in ensuring the devil's long term survival in the wild.
In March 2017, scientists at the University of Tasmania presented an apparent first report of having successfully treated Tasmanian devils suffering from the disease, by injecting live cancer cells into the infected devils to stimulate their immune system to recognise the disease and fight it off.
The differential diagnosis of Rosai–Dorfman disease includes both malignant and nonmalignant diseases, such as granulomatosis with polyangiitis, Langerhans cell histiocytosis, Langerhans cell sarcoma, lymphoma, sarcoidosis, and tuberculosis. The disease is diagnosed by biopsy of affected tissues. Microscopic examination of stained specimens will show histiocytes with lymphocytes and possibly other types of cells trapped within them, a phenomenon known as emperipolesis. Upon immunohistochemical staining, the histiocytes will be positive for S100, CD68, and CD163 but negative for CD1a.
Pogosta disease is a viral disease, established to be identical with other diseases, Karelian fever and Ockelbo disease. The names are derived from the words Pogosta, Karelia and Ockelbo, respectively.
The symptoms of the disease include usually rash, as well as mild fever and other flu-like symptoms; in most cases the symptoms last less than 5 days. However, in some cases, the patients develop a painful arthritis. There are no known chemical agents available to treat the disease.
It has long been suspected that the disease is caused by a Sindbis-like virus, a positive-stranded RNA virus belonging to the Alphavirus genus and family Togaviridae. In 2002 a strain of Sindbis was isolated from patients during an outbreak of the Pogosta disease in Finland, confirming the hypothesis.
This disease is mainly found in the Eastern parts of Finland; a typical Pogosta disease patient is a middle-aged person who has been infected through a mosquito bite while picking berries in the autumn. The prevalence of the disease is about 100 diagnosed cases every year, with larger outbreaks occurring in 7-year intervals.
No serious long-term effects are known for this disease, but preliminary evidence suggests, if such symptoms do occur, they are less severe than those associated with Lyme disease.
Grover's may be suspected by its appearance, but since it has such a characteristic appearance under the microscope a shave skin or punch biopsy is often performed.
As in humans, the sensitivity of testing methods for rodents contributes to the accuracy of diagnosis. LCMV is typically identified through serology. However, in an endemically infected colony, more practical methods include MAP (mouse antibody production) and PCR testing. Another means of diagnosis is introducing a known naïve adult mouse to the suspect rodent colony. The introduced mouse will seroconvert, allowing use of immunofluorescence antibody (IFA), MFIA or ELISA to detect antibodies.
Pacheco's disease is an eponymously named disease; it is named after the Brazilian veterinarian, Genesio Pacheco, who first came across the disease in 1929, in an outbreak affecting the turquoise-fronted amazon parrot, "Amazona aestiva". Initially, Pacheco's disease was thought to be a manifestation of avian psittacosis. The causative agent of the disease, a herpesvirus, was not identified until 1975.
Morbidity and mortality range from both extremes as the significance correlate with the underlying systemic disease.
Devil facial tumour disease (DFTD) is an aggressive non-viral clonally transmissible cancer which affects Tasmanian devils, a marsupial native to Australia.
DFTD was first described in 1996. In the subsequent decade the disease ravaged Tasmania's wild devils, with estimates of decline ranging from 20% to as much as 50% of the devil population, across over 65% of the state. Affected high-density populations suffer up to 100% mortality in 12–18 months. The disease has mainly been concentrated in Tasmania's eastern half. Visible signs of DFTD begin with lesions and lumps around the mouth. These develop into cancerous tumours that may spread from the face to the entire body. Devils usually die within six months from organ failure, secondary infection, or metabolic starvation as the tumours interfere with feeding. As of 2010, 80% of population is infected, and only 0.1% is not affected. DFTD affects males and females equally. As of 2010, the population had been reduced by 70% (from 1996 census data), and if a cure is not found, a prediction has been made that the species will become extinct by 2035.
The most plausible route of transmission is through biting, particularly when canine teeth come into direct contact with the diseased cells. Other modes of transmission that cannot be discounted, yet haven't been conclusively proven, are the ingesting of an infected carcass and the sharing of food, both of which involve an allogeneic transfer of cells between unrelated individuals.. The cancer seems to infect the fittest devil individuals, which are socially dominant. Animals that eventually become infected survive at a higher rate and reproduce more before dying of the disease than devils that don’t get the cancer.
As of 2010, six females had been reported to have been found with partial immunity to DTF, and breeding in captivity was begun in an attempt to save the population.
Wet-tail is a disease in the animal's intestines caused by the bacteria, "Lawsonia intracellularis". Wet-tail is a stress related illness—such stress can be caused by a variety of factors, including:
- Too much handling
- Change in environment
- Change in diet
- Extremely unclean caging
- Being away from mother and/or siblings
- Illness or death of a pair-bond or mate
There seems to be beneficial responses to clindamycin therapy as the lesions regress. This leads to the hypothesis that microorganisms may be playing a role in the initial stages of Kyrle disease.
A family with Kyrle disease were examined which their skin lesions were benign. However, when three of the young adult members were closely examined, they had posterior subcapsular cataracts and two of those three developed multiple tiny yellow-brown anterior stromal corneal opacities. In order to determine if there is any correlation between Kyrle disease and the ocular observations, more cases of Kyrle disease are to be analyzed.
All in all, since Kyrle disease is relatively rare, more cases need to be studied and analyzed in order to understand the underlying pathogenesis and to improve the management of the disease.
Immunosuppressive therapy has been effective in halting the disease for laboratory animals.
Swine vesicular disease (SVD) is an acute, contagious viral disease of swine caused by the swine vesicular disease virus, an enterovirus. It is characterized by fever and vesicles with subsequent ulcers in the mouth and on the snout, feet, and teats. The pathogen is relatively resistant to heat, and can persist for a long time in salted, dried, and smoked meat products. Swine vesicular disease does not cause economically-important disease, but is important due to its similarity to foot-and-mouth disease.