Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Definitive diagnosis of Merkel cell carcinoma (MCC) requires examination of biopsy tissue. An ideal biopsy specimen is either a punch biopsy or a full-thickness incisional biopsy of the skin including full-thickness dermis and subcutaneous fat. In addition to standard examination under light microscopy, immunohistochemistry (IHC) is also generally required to differentiate MCC from other morphologically similar tumors such as small cell lung cancer, the small cell variant of melanoma, various cutaneous leukemic/lymphoid neoplasms, and Ewing's sarcoma. Similarly, most experts recommend longitudinal imaging of the chest, typically a CT scan, to rule out that the possibility that the skin lesion is a cutaneous metastasis of an underlying small cell carcinoma of the lung.
The first step to diagnosing tonsil carcinoma is to obtain an accurate history from the patient. The physician will also examine the patient for any indicative physical signs. A few tests then, maybe conducted depending on the progress of the disease or if the doctor feels the need for. The tests include:
Fine needle aspiration, blood tests, MRI, x-rays and PET scan.
The staging of a tumor mass is based on TNM staging.
T staging is the based on the tumor mass. The N staging is based on the extent of spread of cancer to the lymph nodes. Finally, the M stage indicates if the cancer has spread beyond the head and neck or not.
HPV+OPC is usually diagnosed at a more advanced stage than HPV-OPC, with 75–90% having involvement of regional lymph nodes. Genetic signatures of HPV+ and HPV- OPC are different. HPV+OPC is associated with expression level of the E6/E7 mRNAs and of p16. Nonkeratinizing squamous cell carcinoma strongly predicts HPV-association. HPV16 E6/E7-positive cases are histopathologically characterized by their verrucous or papillary (nipple like) structure and koilocytosis of the adjacent mucosa. Approximately 15% of HNSCCs are caused by HPV16 infection and the subsequent constitutive expression of E6 and E7, and some HPV-initiated tumors may lose their original characteristics during tumor progression. High-risk HPV types may be associated with oral carcinoma, by cell-cycle control dysregulation, contributing to oral carcinogenesis and the overexpression of mdm2, p27 and cathepsin B.
HPV+OPC is not merely characterized by the presence of HPV-16. Only the expression of viral oncogenes within the tumor cells plus the serum presence of E6 or E7 antibodies is unambiguously conclusive. There is not a standard HPV testing method in head and neck cancers, both in situ hybridization (ISH) and polymerase chain reaction (PCR) are commonly used. Both methods have comparable performance for HPV detection, however it is important to use appropriate sensitivity controls. Immunohistochemistry (IHC) staining of the tissue for p16 is frequently used as a cost effective surrogate for HPV in OPC, compared to ISH or PCR but there is a small incidence of HPV-negative p16-positive disease accounting for about 5% of HPV-OPC.
Prevention of HPV+OPC involves avoiding or reducing exposure to risk factors where possible. About 90% of HPV+OPC carry HPV 16, and another 5% type 18. These two types are both targets of available vaccines. HPV vaccines given prior to exposure can prevent persistent genital infection and the consequent precancerous state. Therefore, they have a theoretical potential to prevent oral HPV infection. A 2010 review study has found that HPV16 oral infection was rare (1.3%) among the 3,977 healthy subjects analyzed.
Prognosis can range considerably for patients, depending where on the scale they have been staged. Generally speaking, the earlier the cancer is diagnosed, the better the prognosis. The overall 5-year survival rate for all stages of penile cancer is about 50%.
Avoidance of recognised risk factors (as described above) is the single most effective form of prevention. Regular dental examinations may identify pre-cancerous lesions in the oral cavity.
When diagnosed early, oral, head and neck cancers can be treated more easily and the chances of survival increase tremendously. As of 2017 it was not known if existing HPV vaccines can help prevent head and neck cancer.
People with HPV-mediated oropharyngeal cancer tend to have higher survival rates. The prognosis for people with oropharyngeal cancer depends on the age and health of the person and the stage of the disease. It is important for people with oropharyngeal cancer to have follow-up exams for the rest of their lives, as cancer can occur in nearby areas. In addition, it is important to eliminate risk factors such as smoking and drinking alcohol, which increase the risk for second cancers.
Anal Pap smears similar to those used in cervical cancer screening have been studied for early detection of anal cancer in high-risk individuals. In 2011, the HIV clinic implemented a program to enhance access to anal cancer screening for HIV-positive men. Nurse practitioners perform anal Papanicolaou screening, and men with abnormal results receive further evaluation with high-resolution anoscopy. The program has helped identify many precancerous growths, allowing them to be safely removed.
Since Merkel-cell cancer is uncommon and difficult to diagnose, patients may want a second opinion about the diagnosis and treatment plan before starting treatment. However, early diagnosis and treatment of Merkel-cell cancers are important factors in decreasing the chance of metastasis, after which it is exceptionally difficult to cure.
The number of studies focusing on the development of new targeted anticancer therapy is steadily rising, and thus there is hope that new drug regimes for patients with distant and systemic Merkel-cell carcinoma disease will be available in the near future. In particular, many study groups are looking for new strategies to target the MCV either to prevent infection or to inhibit viral-induced carcinogenesis.
Even highly advanced metastatic Merkel cell carcinoma can be responsive to PD-1 inhibitor treatment, providing promise for new chemotherapeutic and immunotherapeutic options.
Staging of nasopharyngeal carcinoma is based on clinical and radiologic examination. Most patients present with Stage III or IV disease.
Stage I is a small tumor confined to nasopharynx.
Stage II is a tumor extending in the local area, or that with any evidence of limited neck (nodal) disease.
Stage III is a large tumor with or without neck disease, or a tumor with bilateral neck disease.
Stage IV is a large tumor involving intracranial or infratemporal regions, an extensive neck disease, and/or any distant metastasis.
LCIS (lobular neoplasia is considered pre-cancerous) is an indicator (marker) identifying women with an increased risk of developing invasive breast cancer. This risk extends more than 20 years. Most of the risk relates to subsequent invasive ductal carcinoma rather than to invasive lobular carcinoma.
While older studies have shown that the increased risk is equal for both breasts, a more recent study suggests that the ipsilateral (same side) breast may be at greater risk.
Diagnosis is confirmed via biopsy of the tissue(s) suspected to be affected by SCC. For the skin, look under skin biopsy.
The pathological appearance of a squamous cell cancer varies with the depth of the biopsy. For that reason, a biopsy including the subcutaneous tissue and basalar epithelium, to the surface is necessary for correct diagnosis. The performance of a shave biopsy (see skin biopsy) might not acquire enough information for a diagnosis. An inadequate biopsy might be read as actinic keratosis with follicular involvement. A deeper biopsy down to the dermis or subcutaneous tissue might reveal the true cancer. An excision biopsy is ideal, but not practical in most cases. An incisional or punch biopsy is preferred. A shave biopsy is least ideal, especially if only the superficial portion is acquired.
There are several treatment options for penile cancer, depending on staging. They include surgery, radiation therapy, chemotherapy, and biological therapy. The most common treatment is one of five types of surgery:
- Wide local excision—the tumor and some surrounding healthy tissue are removed
- Microsurgery—surgery performed with a microscope is used to remove the tumor and as little healthy tissue as possible
- Laser surgery—laser light is used to burn or cut away cancerous cells
- Circumcision—cancerous foreskin is removed
- Amputation (penectomy)—a partial or total removal of the penis, and possibly the associated lymph nodes.
Radiation therapy is usually used adjuvantly with surgery to reduce the risk of recurrence. With earlier stages of penile cancer, a combination of topical chemotherapy and less invasive surgery may be used. More advanced stages of penile cancer usually require a combination of surgery, radiation and chemotherapy.
In addition to all the above, treatment of the underlying disease like brucellosis, is important to limit disease recurrence.
The long-term outcome of squamous cell carcinomas is dependent upon several factors: the sub-type of the carcinoma, available treatments, location(s) and severity, and various patient health-related variables (accompanying diseases, age, etc.). Generally, the long-term outcome is positive, as less than 4% of Squamous cell carcinoma cases are at risk of metastasis. Some particular forms of squamous cell carcinomas have a higher mortality rate. One study found squamous cell carcinoma of the penis had a much greater rate of mortality than some other forms of squamous cell carcinoma, that is, about 23%, although this relatively high mortality rate may be associated with possibly latent diagnosis of the disease due to patients avoiding genital exams until the symptoms are debilitating, or refusal to submit to a possibly scarring operation upon the genitalia. Squamous cell carcinoma occurring in the organ transplant population is also associated with a higher risk of mortality.
Cancer has spread to other parts of the body; the tumor may be any size and may have spread to lymph nodes.
Anatomical staging supplemented preclinical staging starting in 1988. FIGO’s revised TNM classification system uses tumor size (T), lymph node involvement (N) and presence or absence of metastasis (M) as criteria for staging. Stages I and II describe the early stages of vulvar cancer that still appear to be confined to the site of origin. Stage III cancers include greater disease extension to neighboring tissues and inguinal lymph nodes on one side. Stage IV indicates metastatic disease to inguinal nodes on both sides or distant metastases.
The differential for OSSN includes pterygium, pingueculum, papilloma, solar keratosis, lipoma, lymphoma, chronic blepharoconjunctivitis, inflammation, melanoma, ocular pannus, pyogenic granuloma, kaposi sarcoma, keratocanthoma, mucoepidermoid carcinoma, pseudoepitheliomatous hyperplasia, and adenocarcinoma. While confocal microscopy can be used for diagnosis, biopsy is considered the standard, especially before treatment with a cytotoxic medication.
Overall, five-year survival rates for vulvar cancer are around 78% but may be affected by individual factors including cancer stage, cancer type, patient age and general medical health. Five-year survival is greater than 90% for patients with stage I lesions but decreases to 20% when pelvic lymph nodes are involved. Lymph node involvement is the most important predictor of prognosis. Thus, early diagnosis is important.
Since many, if not most, anal cancers derive from HPV infections, and since the HPV vaccine before exposure to HPV prevents infection by some strains of the virus and has been shown to reduce the incidence of potentially precancerous lesions, scientists surmise that HPV vaccination may reduce the incidence of anal cancer.
On 22 December 2010, the U.S. Food and Drug Administration approved Gardasil vaccine to prevent anal cancer and pre-cancerous lesions in males and females aged 9 to 26 years. The vaccine has been used before to help prevent cervical, vulvar, and vaginal cancer, and associated lesions caused by HPV types 6, 11, 16, and 18 in women.
When associated with the prostate, squamous cell carcinoma is very aggressive in nature. It is difficult to detect as there is no increase in prostate specific antigen levels seen; meaning that the cancer is often diagnosed at an advanced stage.
Checking the cervix by the Papanicolaou test, or Pap test, for cervical cancer has been credited with dramatically reducing the number of cases of and mortality from cervical cancer in developed countries. Pap test screening every three to five years with appropriate follow-up can reduce cervical cancer incidence up to 80%. Abnormal results may suggest the presence of precancerous changes, allowing examination and possible preventive treatment. The treatment of low-grade lesions may adversely affect subsequent fertility and pregnancy. Personal invitations encouraging women to get screened are effective at increasing the likelihood they will do so. Educational materials also help increase the likelihood women will go for screening, but they are not as effective as invitations.
According to the 2010 European guidelines, the age at which to start screening ranges between 20 and 30 years of age, but preferentially not before age 25 or 30 years, and depends on burden of the disease in the population and the available resources.
In the United States, screening is recommended to begin at age 21, regardless of age at which a woman began having sex or other risk factors. Pap tests should be done every three years between the ages of 21 and 65. In women over the age of 65, screening may be discontinued if no abnormal screening results were seen within the previous 10 years and no history of CIN 2 or higher exists. HPV vaccination status does not change screening rates. Screening can occur every 5 years between ages 30 and 65 when a combination of cervical cytology screening and HPV testing is used and this is preferred. However, it is acceptable to screen this age group with a Pap test alone every three years. Screening is not beneficial before age 25 as the rate of disease is low. Screening is not beneficial in women older than 60 years if they have a history of negative results. The American Society of Clinical Oncology (ASCO) guideline has recommend for different levels of resource availability.
Liquid-based cytology is another potential screening method. Although it was probably intended to improve on the accuracy of the Pap test, its main advantage has been to reduce the number of inadequate smears from around 9% to around 1%. This reduces the need to recall women for a further smear. The United States Preventive Services Task Force supports screening every 5 years in those who are between 30 and 65 years when cytology is used in combination with HPV testing.
Pap tests have not been as effective in developing countries. This is in part because many of these countries have an impoverished health care infrastructure, too few trained and skilled professionals to obtain and interepret Pap tests, uninformed women who get lost to follow-up, and a lengthy turn-around time to get results. These realities have resulted in the investigation of cervical screening approaches that use fewer resources and offer rapid results such as visual inspection with acetic acid or HPV DNA testing.
LCIS may be treated with close clinical follow-up and mammographic screening, tamoxifen or related hormone controlling drugs to reduce the risk of developing cancer, or bilateral prophylactic mastectomy. Some surgeons consider bilateral prophylactic mastectomy to be overly aggressive treatment except for certain high-risk cases.
Vaginal squamous cell carcinoma spreads slowly and usually stays near the vagina, but may spread to the lungs and liver. This is the most common type of vaginal cancer.
Head and neck cancers are malignant neoplasms that arise in the head and region which comprises nasal cavity, paranasal sinuses, oral cavity, salivary glands, pharynx, and larynx. Majority of head and neck cancers histologically belong to squamous cell type and hence they are categorized as Head and Neck Squamous Cell Carcinoma (abbreviated as HNSCC)[Forastiere AA, 2003]. HNSCC are the 6th most common cancers worldwide and 3rd most common cancers in developing world. They account for ~ 5% of all malignancies worldwide (Ferlay J, 2010) and 3% of all malignancies in the United States (Siegel R, 2014).
Risk factors include tobacco consumption (chewing or smoking), alcohol consumption, Epstein-Barr virus (EBV) infection, human papilloma virus (HPV; esp. HPV 16, 18) infection, betel nut chewing, wood dust exposures, consumption of certain salted fish and others (NCI Factsheet, 2013). EBV infection has been specifically associated with nasopharyngeal cancer. Reverse smoking was considered as a risk factor for oral cancer. Interestingly, "Cis-retinoic acid" (i.e. supplements of retinoic acid) intake may increase the risk of HNSCC in active smokers. Low consumption of fruits and vegetables was associated with higher incidence of HNSCC.
HNSCC classification: Based on the HPV infection status, head and neck cancers are classified into HPV-positive and HPV-negative categories. So far, this is the only available molecular classification. Majority (>50%) of oral cancers are HPV-positive in the U.S. HPV-positive oral cancers are widely prevalent in younger patients and are associated with multiple sexual partners and oral sexual practices. HPV-positive cancers have better prognosis, especially for nonsmokers as compared to HPV-negative cancers.
Staging and grading of HNSCC: HNSCC are classified according to the tumor-node-metastasis (TNM) system of American Joint Committee on cancer. TNM staging system for HNSCC are discussed else where.
Symptoms include lump or sore, sore throat, hoarse of voice, difficulty in swallowing etc (NCI Factsheet, 2013).
Treatment for HNSCC is predominantly based on the stage of the disease. Factors such as patient fitness, baseline swallow, airway functional status, and others are considered before determining the treatment plan. Standard of care for HNSCC includes one or combination of the following: surgery, radiation, chemotherapeutic agents such as Cisplatin, 5-Flurouracil (5-FU) etc. Molecularly targeted therapies were developed since the discovery of role of epidermal growth factor receptor (EGFR) signaling in HNSCC development, progression and prognosis. These targeted therapies include monoclonal antibodies (such as cetuximab, panitumumab etc.) and tyrosine kinase inhibitors (such as erlotinib, gefitinib, etc.). Among these EGFR-targeting agents, only cetuximab has been approved by FDA in 2006 for HNSCC treatment.
Ninety percent (MacMillan, 2015) of cases of head and neck cancer (cancer of the mouth, nasal cavity, nasopharynx, throat and associated structures) are due to squamous cell carcinoma. Symptoms may include a poorly healing mouth ulcer, a hoarse voice or other persistent problems in the area. Treatment is usually with surgery (which may be extensive) and radiotherapy. Risk factors include smoking, alcohol consumption and hematopoietic stem cell transplantation (Elad S, Zadik Y, Zeevi I, et al., 2010, pp. 1243–1244). In addition, recent studies show that about 25% of mouth and 35% of throat cancers are associated with HPV. The 5 year disease free survival rate for HPV positive cancer is significantly higher when appropriately treated with surgery, radiation and chemotherapy as compared to non-HPV positive cancer, substantiated by multiple studies including research conducted by Maura Gillison, "et al." of Johns Hopkins Sidney Kimmel Cancer Center.