Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Recognizing HAE is often difficult due to the wide variability in disease expression. The course of the disease is diverse and unpredictable, even within a single patient over their lifetime. This disease may be similar in its presentation to other forms of angioedema resulting from allergies or other medical conditions, but it is significantly different in cause and treatment. When hereditary angioedema is misdiagnosed as an allergy it is most commonly treated with steroids and epinephrine, drugs that are usually ineffective in treating a hereditary angioedema episode. Other misdiagnoses have resulted in unnecessary exploratory surgery for patients with abdominal swelling and other hereditary angioedema patients report that their abdominal pain was wrongly diagnosed as psychosomatic.
HAE accounts for only a small fraction of all cases of angioedema. To avoid potentially fatal consequences such as upper airway obstruction and unnecessary abdominal surgery, the importance of a correct diagnosis cannot be over-emphasized.
Consider hereditary angioedema (HAE) if a patient presents with:
- Recurrent angioedema (without urticaria)
- Recurrent episodes of abdominal pain and vomiting
- Laryngeal edema
- Positive family history of angioedema
A blood test, ideally taken during an episode, can be used to diagnose the condition. Measure: serum complement factor 4 (C4),
C1 inhibitor (C1-INH) antigenic protein, C1 inhibitor (C1-INH) functional level if available.Analysis of complement C1 inhibitor levels may play a role in diagnosis. C4 and C2 are complementary components.
Treatment with ACE inhibitors is contraindicated in this condition, as these drugs can lead to bradykinin accumulation, which can precipitate disease episodes.
The diagnosis is made on the clinical picture. Routine blood tests (complete blood count, electrolytes, renal function, liver enzymes) are typically performed. Mast cell tryptase levels may be elevated if the attack was due to an acute allergic (anaphylactic) reaction. When the patient has been stabilized, particular investigations may clarify the exact cause; complement levels, especially depletion of complement factors 2 and 4, may indicate deficiency of "C1-inhibitor". HAE type III is a diagnosis of exclusion consisting of observed angioedema along with normal C1 levels and function.
The hereditary form (HAE) often goes undetected for a long time, as its symptoms resemble those of more common disorders, such as allergy or intestinal colic. An important clue is the failure of hereditary angioedema to respond to antihistamines or steroids, a characteristic that distinguishes it from allergic reactions. It is particularly difficult to diagnose HAE in patients whose episodes are confined to the gastrointestinal tract. Besides a family history of the disease, only a laboratory analysis can provide final confirmation. In this analysis, it is usually a reduced complement factor C4, rather than the C1-INH deficiency itself, that is detected. The former is used during the reaction cascade in the complement system of immune defense, which is permanently overactive due to the lack of regulation by C1-INH.
Angioedema is classified as either hereditary or acquired.
In acquired angioedema, HAE types I and II, and nonhistaminergic angioedema, antifibrinolytics such as tranexamic acid or ε-aminocaproic acid may be effective. Cinnarizine may also be useful because it blocks the activation of C4 and can be used in patients with liver disease, while androgens cannot.
In 1993, Peter James Dyck divided HSAN I further into five subtypes HSAN IA-E based on the presence of additional features. These features were thought to result from the genetic diversity of HSAN I (i.e. the expression of different genes, different alleles of a single gene, or modifying genes) or environmental factors. Molecular genetic studies later confirmed the genetic diversity of the disease.
The diagnosis of HSAN I is based on the observation of symptoms described above and is supported by a family history suggesting autosomal dominant inheritance. The diagnosis is also supported by additional tests, such as nerve conduction studies in the lower limbs to confirm a sensory and motor neuropathy. In sporadic cases, acquired neuropathies, such as the diabetic foot syndrome and alcoholic neuropathy, can be excluded by the use of magnetic resonance imaging and by interdisciplinary discussion between neurologists, dermatologists, and orthopedics.
The diagnosis of the disease has been revolutionized by the identification of the causative genes. The diagnosis is now based on the detection of the mutations by direct sequencing of the genes. Nevertheless, the accurate phenotyping of patients remains crucial in the diagnosis. For pregnant patients, termination of pregnancy is not recommended.
HSAN I must be distinguished from hereditary motor and sensory neuropathy (HMSN) and other types of hereditary sensory and autonomic neuropathies (HSAN II-V). The prominent sensory abnormalities and foot ulcerations are the only signs to separate HSAN I from HMSN. HSAN II can be differentiated from HSAN I as it is inherited as an autosomal recessive trait, it has earlier disease onset, the sensory loss is diffused to the whole body, and it has less or no motor symptoms. HSAN III-V can be easily distinguished from HSAN I because of congenital disease onset. Moreover, these types exhibit typical features, such as the predominant autonomic disturbances in HSAN III or congenital loss of pain and anhidrosis in HSAN IV.
Serum analysis often aids in the diagnosis of a specific underlying disease. The presence of anti-Glomerular basement membrane (GBM) antibodies suggests type I RPGN; antinuclear antibodies (ANA) may support a diagnosis of systemic lupus erythematosus and type II RPGN; and type III and idiopathic RPGN are frequently associated with anti-neutrophil cytoplasmic antibodies (ANCA)-positive serum.
Impaired renal functions in an individual with 3 months or less of the condition is an indication of RPGN. An ultrasonographic examination of the abdomen should also be done. Upon urine examination, urinary sediment (proteinuria) can indicate proliferative glomerulonephritis, many cases of rapidly progressive glomerulonephritis need a renal biopsy to make a diagnosis.
RPGN can be classified into three types, based upon the immunofluorescence patterns:
Though BLSII is an attractive candidate for gene therapy, bone marrow transplant is currently the only treatment.
Though it is only definitively diagnosed by a genetic test, autosomal dominant porencephaly type I can be suspected if the disease is known to run in the family or if someone shows symptoms. CT scanning or MRI may be useful in indicating a diagnosis. COL4A1 may be mutated in other diseases that need to be distinguished, including brain small vessel disease with hemorrhage and HANAC syndrome. CADASIL syndrome is caused by a mutation in a different gene, but may cause similar symptoms. Sporadic porencephaly is another disorder that can appear similar.
Diagnosis often can be made through clinical examination and urine tests (excess mucopolysaccharides are excreted in the urine). Enzyme assays (testing a variety of cells or body fluids in culture for enzyme deficiency) are also used to provide definitive diagnosis of one of the mucopolysaccharidoses. Prenatal diagnosis using amniocentesis and chorionic villus sampling can verify if a fetus either carries a copy of the defective gene or is affected with the disorder. Genetic counseling can help parents who have a family history of the mucopolysaccharidoses determine if they are carrying the mutated gene that causes the disorders.
The GBM is rebuilt on top of the deposits, causing a "tram tracking" appearance under the microscope. Mesangial cellularity is increased.
A large British study from 2008 found a median estimated life expectancy of 11.6 years.
Membranoproliferative glomerulonephritis ("MPGN"), also known as mesangiocapillary glomerulonephritis, is a type of glomerulonephritis caused by deposits in the kidney glomerular mesangium and basement membrane (GBM) thickening, activating complement and damaging the glomeruli.
MPGN accounts for approximately 4% of primary renal causes of nephrotic syndrome in children and 7% in adults.
It should not be confused with membranous glomerulonephritis, a condition in which the basement membrane is thickened, but the mesangium is not.
Diagnostic measures can include the following.
Before birth:
- Abnormally low levels of UDP-N-acetylglucoseamine-1-phosphodiesterase enzyme activity in amniotic fluid cells or chronic villi
In infants:
- Elevated plasma lysosomal enzyme concentration
- Decreased concentration of lysosomal enzymes in cultured fibroblasts
- Presence of inclusion bodies and peripheral blood lymphocytes
- Low levels of UDP-N-acetylglucoseamine-1-phosphotransferase enzyme activity as measured in white blood cells
Treatment for autosomal dominant porencephaly type I is based on the symptoms that an individual is experiencing - for example, treatment of seizures with anticonvulsants. It is particularly important for individuals with this disorder and hypertension to control their blood pressure, as they are at higher risk of stroke. Other stroke prevention treatments include avoiding anticoagulants, smoking, and situations that may lead to head trauma.
Bare lymphocyte syndrome is a condition caused by mutations in certain genes of the major histocompatibility complex or involved with the processing and presentation of MHC molecules. It is a form of severe combined immunodeficiency.
One 10-year-old girl with Crigler–Najjar syndrome type I was successfully treated by liver cell transplantation.
The homozygous Gunn rat, which lacks the enzyme uridine diphosphate glucuronyltransferase (UDPGT), is an animal model for the study of Crigler–Najjar syndrome. Since only one enzyme is working improperly, gene therapy for Crigler-Najjar is a theoretical option which is being investigated.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
Because the variability of this disease is so great and the way that it reveals itself could be multi-faceted; once diagnosed, a multidisciplinary team is recommended to treat the disease and should include a craniofacial surgeon, ophthalmologist, pediatrician, pediatric urologist, cardiologist, pulmonologist, speech pathologist, and a medical geneticist. Several important steps must be followed, as well.
- Past medical history
- Physical examination with special attention to size and measurements of facial features, palate, heart, genitourinary system and lower respiratory system
- Eye evaluation
- Hypospadias assessment by urologist
- Laryngoscopy and chest x-ray for difficulties with breathing/swallowing
- Cleft lip/palate assessment by craniofacial surgeon
- Assessment of standard age developmental and intellectual abilities
- Anal position assessment
- Echocardiogram
- Cranial imaging
Many surgical repairs may be needed, as assessed by professionals. Furthermore, special education therapies and psychoemotional therapies may be required, as well. In some cases, antireflux drugs can be prescribed until risk of breathing and swallowing disorders are removed. Genetic counseling is highly advised to help explain who else in the family may be at risk for the disease and to help guide family planning decisions in the future.
Because of its wide variability in which defects will occur, there is no known mortality rate specifically for the disease. However, the leading cause of death for people with Opitz G/BBB syndrome is due to infant death caused by aspiration due to esophageal, pharyngeal or laryngeal defects.
Fortunately, to date there are no factors that can increase the expression of symptoms of this disease. All abnormalities and symptoms are present at birth.
The majority of patients is initially screened by enzyme assay, which is the most efficient method to arrive at a definitive diagnosis. In some families where the disease-causing mutations are known and in certain genetic isolates, mutation analysis may be performed. In addition, after a diagnosis is made by biochemical means, mutation analysis may be performed for certain disorders.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
A cure does not exist for I-Cell disease/Mucolipidosis II disease. Treatment is limited to controlling or reducing the symptoms that are associated with this disorder. Nutritional supplements, particularly iron and vitamin B12, are often recommended for individuals with I-Cell disease. Physical therapy to improve motor delays and speech therapy to improve language acquisition are treatment options. Surgery can remove the thin layer of corneal clouding to temporarily improve the complication. It is possible that bone marrow transplant may be helpful in delaying or correcting the neurological deterioration that occurs with I-Cell disease.. Even though there is no existing treatment, the Yash Gandhi Foundation is a 501(c)(3) non-profit organization focused on funding research for I-Cell disease
As one of the urea cycle disorders, citrullinemia type I needs to be distinguished from the others: carbamyl phosphate synthetase deficiency, argininosuccinic acid lyase deficiency, ornithine transcarbamylase deficiency, arginase deficiency, and N-Acetylglutamate synthase deficiency. Other diseases that may appear similar to CTLN1 include the organic acidemias and citrullinemia type II. To diagnose CTLN1, a blood test for citrulline and ammonia levels can indicate the correct diagnosis; high levels of both are indicative of this disorder. Newborns are routinely screened for CTLN1 at birth. A genetic test is the only definitive way to diagnose it.
Type I hypersensitivity (or immediate hypersensitivity) is an allergic reaction provoked by reexposure to a specific type of antigen referred to as an allergen. Type I is not to be confused with type II, type III, or type IV hypersensitivities, nor is it to be confused with Type I Diabetes or Type I of any other disease or reaction.
Exposure may be by ingestion, inhalation, injection, or direct contact.