Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pathologically, PMG is defined as “an abnormally thick cortex formed by the piling upon each other of many small gyri with a fused surface.” To view these microscopic characteristics, magnetic resonance imaging (MRI) is used. First physicians must distinguish between polymicrogyria and pachygyria. Pachygria leads to the development of broad and flat regions in the cortical area, whereas the effect of PMG is the formation of multiple small gyri. Underneath a computerized tomography (CT scan) scan, these both appear similar in that the cerebral cortex appears thickened. However, MRI with a T1 weighted inversion recovery will illustrate the gray-white junction that is characterized by patients with PMG. An MRI is also usually preferred over the CT scan because it has sub-millimeter resolution. The resolution displays the multiple folds within the cortical area, which is continuous with the neuropathology of an infected patient.
When seizures are present in any forms of cortical dysplasia, they are resistant to medication. Frontal lobe resection provides significant relief from seizures to a minority of patients with periventricular lesions.
Detection of heterotopia generally occurs when a patient receives brain imaging—usually an MRI or CT scan—to diagnose seizures that are resistant to medication. Correct diagnosis requires a high degree of radiological skill, due to the heterotopia's resemblance to other masses in the brain.
Gross examination exposes a pattern of many small gyri clumped together, which causes an irregularity in the brain surface. The cerebral cortex, which in normal patients is six cell layers thick, is also thinned. As mentioned prior, the MRI of an infected patient shows what appears to be a thickening of the cerebral cortex because of the tiny folds that aggregate causing a more dense appearance. However gross analysis shows an infected patient can have as few as one to all six of these layers missing.
Once the diagnosis of polymicrogyria has been established in an individual, the following approach can be used for discussion of prognosis:
A pregnancy history should be sought, with particular regard to infections, trauma, multiple gestations, and other documented problems. Screening for the common congenital infections associated with polymicrogyria with standard TORCH testing may be appropriate. Other specific tests targeting individual neurometabolic disorders can be obtained if clinically suggested.
The following may help in determining a genetic etiology:
Family history
It is important to ask for the presence of neurologic problems in family members, including seizures, cognitive delay, motor impairment, pseudobulbar signs, and focal weakness because many affected family members, particularly those who are older, may not have had MRI performed, even if these problems came to medical attention. In addition, although most individuals with polymicrogyria do present with neurologic difficulties in infancy, childhood, or adulthood, those with mild forms may have no obvious deficit or only minor manifestations, such as a simple lisp or isolated learning disability. Therefore, if a familial polymicrogyria syndrome is suspected, it may be reasonable to perform MRI on relatives who are asymptomatic or have what appear to be minor findings. The presence of consanguinity in a child's parents may suggest an autosomal recessive familial polymicrogyria syndrome.
Physical examination
A general physical examination of the proband may identify associated craniofacial, musculoskeletal, or visceral malformations that could indicate a particular syndrome. Neurologic examination should assess cognitive and mental abilities, cranial nerve function, motor function, deep tendon reflexes, sensory function, coordination, and gait (if appropriate).
Genetic testing
Parents of a proband
- The parents of an affected individual are obligate heterozygotes and therefore carry one mutant allele.
- Heterozygotes (carriers) are asymptomatic.
Sibs of a proband
- At conception, each sibling of an affected individual has a 25% chance of being affected, a 50% chance of being an asymptomatic carrier, and a 25% chance of being unaffected and not a carrier.
- Once an at-risk sibling is known to be unaffected, the risk of his/her being a carrier is 2/3.
- Heterozygotes (carriers) are asymptomatic.
Offspring of a proband
- Offspring of a proband are obligate heterozygotes and will therefore carry one mutant allele.
- In populations with a high rate of consanguinity, the offspring of a person with GPR56-related BFPP and a reproductive partner who is a carrier of GPR56-related BFPP have a 50% chance of inheriting two GPR56 disease-causing alleles and having BFPP and a 50% chance of being carriers.
Other family members of a proband.
- Each sibling of the proband's parents is at a 50% risk of being a carrier
Because pachygyria is a structural defect no treatments are currently available other than symptomatic treatments, especially for associated seizures. Another common treatment is a gastrostomy (insertion of a feeding tube) to reduce possible poor nutrition and repeated aspiration pneumonia.
Diagnosing colpocephaly prenatally is difficult because in many cases signs start to appear after birth. Prenatal diagnosis is made by detecting enlargement of either or both occipital horns of the lateral ventricles. Usually prenatal ultrasounds don't show cephalic abnormalities and in cases that they do show abnormality is of low accuracy, making it difficult to diagnose colpocephaly. Often, abnormalities in prenatal ultrasounds can be misdiagnosed as hydrocephalus.
Different imaging modalities are commonly used for diagnosis. While computed tomography (CT) provides higher spatial resolution imaging of the brain, cerebral cortex malformations are more easily visualized "in vivo" and classified using magnetic resonance imaging (MRI) which provides higher contrast imaging and better delineation of white and gray matter.
Diffuse pachygyria (a mild form of lissencephaly) can be seen on an MRI as thickened cerebral cortices with few and large gyri and incomplete development of the Sylvian fissures.
- severe epilepsy
- reduced longevity
- varying degrees of mental retardation
- intractable epilepsy
- spasticity
Cognitive ability correlates with the thickness of any subcortical band present and the degree of pachygyria.
After birth, MR imaging can be done to look for cephalic abnormalities. This is the most commonly used method for diagnosing colpocephaly. Physicians look for abnormally large occipital horns of the lateral ventricles and diminished thickness of white matter. Spinal tapping is not a preferred method for diagnosis because newborn babies with colpocephaly or hydrocephaly have open fontanelles which makes it difficult to collect CSF. Also, colpocephaly is not associated with increased pressure.
Three dimensional (3D) T1W, Axial, coronal, sagittal imaging is excellent for differentiation between gray matter and white matter acquisition of high-resolution anatomic information.T2W, Axial and coronal imaging for acquisition of high-resolution anatomic information; delineation of cortex, white matter, and gray matter nuclei. Diffusion tensor, axial imaging is used for evaluation of white matter microstructural integrity, identification of white matter tracts. CISS, axial + MPR imaging for evaluation of cerebellar folia, cranial nerves, ventricles, and foramina. Susceptibility weighted axial scan for Identification and characterization of hemorrhage, blood products, calcification, and iron accumulation.
Tuber cinereum hamartoma may be associated with Pallister-Hall syndrome, a diagnosis characterized by multiple malformations, including polydactyly and imperforate anus. Neurologic symptoms are less severe in Pallister-Hall than in isolated cases of hamartoma.
The tumor is difficult to detect by CT due to decreased sensitivity of the scan at the level of the sella turcica. MRI is the primary imaging modality for detection, with the lesion being of similar signal intensity to gray matter and non-enhancing with contrast. Lack of enhancement is an important imaging characteristic to help distinguish the tumor from similar masses that can occur in this region. These include germ cell tumors, granulomas of Langerhans cell histiocytosis and hypothalamic astrocytomas, as these lesions usually demonstrate at least partial uptake of contrast.
The prognosis of this developmental disorder is highly based on the underlying disorder. Cerebellar hypoplasia may be progressive or static in nature. Some cerebellar hypoplasia resulting from congenital brain abnormalities/malformations are not progressive. Progressive cerebellar hypoplasia is known for having poor prognosis, but in cases where this disorder is static, prognosis is better.
Imaging studies are performed before surgery or biopsy to preclude an intracranial connection. Images usually show a sharply circumscribed but expansile mass. It may be difficult to exclude the intracranial connection if the defect is small whether employing computed tomography or magnetic resonnance.
The MRI of patients with VWM shows a well defined leukodystrophy. These MRIs display reversal of signal intensity of the white matter in the brain. Recovery sequences and holes in the white matter are also visible. Over time, the MRI is excellent at showing rarefaction and cystic degeneration of the white matter as it is replaced by fluid. To show this change, displaying white matter as a high signal (T2-weighted), proton density, and Fluid attenuated inversion recovery (FLAIR) images are the best approach. T2-weighted images also displaying cerebrospinal fluid and rarefied/cystic white matter. To view the remaining tissue, and get perspective on the damage done (also helpful in determining the rate of deterioration) (T1-weighted), proton density, and FLAIR images are ideal as they show radiating stripe patterns in the degenerating white matter. A failure of MRI images is their ineffectiveness and difficulty in interpretation in infants since the brain has not fully developed yet. Though some patterns and signs may be visible, it is still difficult to conclusively diagnose. This often leads to misdiagnosis in infants particularly if the MRI results in equivocal patterns or because of the high water content in infants' brains. The easiest way to fix this problem is a follow-up MRI in the following weeks. A potentially similar appearance of MRI with white matter abnormalities and cystic changes may be seen in some patients with hypomelanosis of Ito, some forms of Lowe's (oculocerebrorenal) disease, or some of the mucopolysaccharidoses.
The most common missed lesion is within the nasal cavity, where a fibrosed nasal polyp may be considered. However, it does not have glial tissue. Further, a polyp usually has mucoserous glands. The lesion is frequently misintrepreted as scar in the subcutaneous tissues, but scar in a <2 year old child would be uncommon. Special stains are frequently required to highlight the diagnosis.
At this time the cause of PCA is unknown; similarly, there are no fully accepted diagnostic criteria for the disease. This is partially due to the gradual onset of PCA symptoms, the variety of symptoms, the rare nature of the disease and younger age of patients (initial symptoms appear in patients of 50–60 years old). In 2012, the first international conference on PCA was held in Vancouver, Canada. Continued research and testing will hopefully result in accepted and standardized criteria for diagnosis.
PCA patients are often initially misdiagnosed with an anxiety disorder or depression. Some believe that patients may experience depression or anxiety due to their awareness of their symptoms, such as decrease in their vision capabilities, yet they are unable to control this decline in their vision or the progressive nature of the disease. The early visual impairments of a PCA patient have often led to an incorrect referral to an ophthalmologist, which can result in unnecessary cataract surgery.
Due to the lack of biological marks of PCA, neuropsychological examinations should be used for diagnosis. Neuroimaging can also assist in diagnosis of PCA. The common tools used for Neuroimaging of both PCA and AD patients are magnetic resonance imaging (MRI's), a popular form of medical imaging that uses magnetic fields and radio waves, as well as single-photon emission computed tomography, an imaging form that uses gamma rays, and positron emission tomography, another imaging tool that creates 3D images with a pair of gamma rays and a tracer. Images of PCA patient’s brains are often compared to AD patient images to assist diagnosis. Due to the early onset of PCA in comparison to AD, images taken at the early stages of the disease will vary from brain images of AD patients. At this early stage PCA patients will show brain atrophy more centrally located in the right posterior lobe and occipital gyrus, while AD brain images show the majority of atrophy in the medial temporal cortex. This variation within the images will assist in early diagnosis of PCA; however, as the years go on the images will become increasingly similar, due to the majority of PCA patients also having AD later in life because of continued brain atrophy. A key aspect found through brain imaging of PCA patients is a loss of grey matter (collections of neuronal cell bodies) in the posterior and occipital temporal cortices within the right hemisphere.
For some PCA patients, neuroimaging may not result with a clear diagnosis; therefore, careful observation of the patient in relation to PCA symptoms can also assist in the diagnosis of the patient. The variation and lack of organized clinical testing has led to continued difficulties and delays in the diagnosis of PCA in patients.
As previously noted, there are often few signs of white matter injury in newborns. Occasionally, physicians can make the initial observations of extreme stiffness or poor ability to suckle. The preliminary diagnosis of PVL is often made using imaging technologies. In most hospitals, premature infants are examined with ultrasound soon after birth to check for brain damage. Severe white matter injury can be seen with a head ultrasound; however, the low sensitivity of this technology allows for some white matter damage to be missed. Magnetic resonance imaging (MRI) is much more effective at identifying PVL, but it is unusual for preterm infants to receive an MRI unless they have had a particularly difficult course of development (including repeated or severe infection, or known hypoxic events during or immediately after birth). No agencies or regulatory bodies have established protocols or guidelines for screening of at-risk populations, so each hospital or doctor generally makes decisions regarding which patients should be screened with a more sensitive MRI instead of the basic head ultrasound.
PVL is overdiagnosed by neuroimaging studies and the other white matter lesions of the brain are underestimated. It is important to differentiate PVL from the following major white matter lesions in the cerebral hemispheres: edematous hemorrhagic leukoencephalopathy (OGL), telentsefalny gliosis (TG), diffuse leukomalacia (DFL), subcortical leukomalacia (SL), periventricular hemorrhagic infarction (PHI), intracerebral hemorrhage ( ICH), multicystic encephalomalacia (ME), subendymal pseudocyst. Diffuse white matter lesions of the cerebral hemispheres of the brain, accompanied by softening and spreading to the central and subcortical areas are more likely DFL, PHI and ME.
Preventing or delaying premature birth is considered the most important step in decreasing the risk of PVL. Common methods for preventing a premature birth include self-care techniques (dietary and lifestyle decisions), bed rest, and prescribed anti-contraction medications. Avoiding premature birth allows the fetus to develop further, strengthening the systems affected during the development of PVL.
An emphasis on prenatal health and regular medical examinations of the mother can also notably decrease the risk of PVL. Prompt diagnosis and treatment of maternal infection during gestation reduces the likelihood of large inflammatory responses. Additionally, treatment of infection with steroids (especially in the 24–34 weeks of gestation) have been indicated in decreasing the risk of PVL.
It has also been suggested that avoiding maternal cocaine usage and any maternal-fetal blood flow alterations can decrease the risk of PVL. Episodes of hypotension or decreased blood flow to the infant can cause white matter damage.
Developmental regression is when a child loses an acquired function or fails to progress beyond a prolonged plateau after a period of relatively normal development. Developmental regression could be due to metabolic disorders, progressive hydrocephalus, worsening of seizures, increased spasticity, worsening of movement disorders or parental misconception of acquired milestones. The timing of onset of developmental regression can be established by repeated medical evaluations, prior photographs and home movies. Whether the neurologic decline is predominantly affecting the gray matter or the white matter of the brain needs to be ascertained. Seizures or EEG changes, movement disorders, blindness with retinal changes, personality changes and dementia are features suggestive of grey matter involvement.
The individual was examined at age 32, but he stated that he started noting differences 5 years before. He noticed sexual impotency, social isolation, unexplained aggression and sadness, loss of motivation, inert laughs, auditory hallucinations, thought insertion, delusions, and imperative commenting. He showed very minimal physical impairments, commonly seen in child-onsets. However, his MRI showed characteristic signs of VWM disease.
Specific and accepted scientific treatment for PCA has yet to be discovered; this may be due to the rarity and variations of the disease. At times PCA patients are treated with prescriptions originally created for treatment of AD such as, cholinesterase inhibitors, Donepezil, Rivastigmine and Galantamine, and Memantine. Antidepressant drugs have also provided some positive effects.
Patients may find success with non-prescription treatments such as psychological treatments. PCA patients may find assistance in meeting with an occupational therapist or sensory team for aid in adapting to the PCA symptoms, especially for visual changes. People with PCA and their caregivers are likely to have different needs to more typical cases of Alzheimer's disease, and may benefit from specialized support groups such as the PCA Support Group based at University College London, or other groups for young people with dementia. No study to date has been definitive to provide accepted conclusive analysis on treatment options.
In a recent analysis (Susac et al., 2003), MRI images from 27 patients fulfilling the diagnostic criteria of Susac's syndrome were reviewed. Multifocal supratentorial lesions were present in all patients. Most lesions were small (3 to 7 mm), though some were larger than 7 mm. All 27 patients had corpus callosum lesions. These all had a punched-out appearance on follow up MRI. Though most commonly involving white matter, many patients also had lesions in deep grey matter structures, as well as leptomeningeal enhancement. Multiple sclerosis (MS) and acute disseminated encephalomyelitis (ADEM) can mimic the MRI changes seen in patients with Susac's syndrome. However, the callosal lesions in Susac's syndrome are centrally located. In comparison, patients with MS and ADEM typically have lesions involving the undersurface of the corpus callosum. Deep gray matter involvement commonly occurs in ADEM but is very rare in MS. Leptomeningeal involvement is not typical of either MS or ADEM. What this means is that if 10 lesions are found in the brain of an MS patient, a lesion may be found in the corpus callosum. If you have 10 lesions in a Susac patient, more than half will be in the corpus callosum.
A concern about this illness is that it mimics multiple sclerosis when looking at the vision loss and brain lesions. If close attention is not paid to the retina of a patient with vision loss and brain lesions, their symptoms may be mistaken for MS instead of Susac's syndrome. This may account for the low prevalence of the illness. There is also a pathological similarity between the endotheliopathy in Susac's syndrome with that seen in juvenile dermatomyositis.
Diagnosis can be made solely on the basis of history and physical examination in people who present with only facial asymmetry. For those who report neurological symptoms such as migraine or seizures, MRI scan of the brain is the imaging modality of choice. A diagnostic lumbar puncture and serum test for autoantibodies may also be indicated in people who present with a seizure disorder of recent onset.