Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of hyper IgM syndrome can be done via the following methods and tests:
- MRI
- Chest radiography
- Pulmonary function test
- Lymph node test
- Laboratory test (to measure CD40)
In terms of diagnosis of "humoral immune deficiency" depends upon the following:
- Measure "serum immunoglobulin levels"
- B cell count
- Family medical history
The following types of CVID have been identified, and correspond to mutations in different gene segments.
According to a European registry study, the mean age at onset of symptoms was 26.3 years old. As per the criteria laid out by ESID (European Society for Immunodeficiencies) and PAGID (Pan-American Group for Immunodeficiency), CVID is diagnosed if:
- the person presents with a marked decrease of serum IgG levels (<4.5 g/L) and a marked decrease below the lower limit of normal for age in at least one of the isotypes IgM or IgA;
- the person is four years of age or older;
- the person lacks antibody immune response to protein antigens or immunization.
Diagnosis is chiefly by exclusion, i.e. alternative causes of hypogammaglobulinemia, such as X-linked agammaglobulinemia, must be excluded before a diagnosis of CVID can be made.
Diagnosis is difficult because of the diversity of phenotypes seen in people with CVID. For example, serum immunoglobulin levels in people with CVID vary greatly. Generally, people can be grouped as follows: no immunoglobulin production, immunoglobulin (Ig) M production only, or both normal IgM and IgG production. Additionally, B cell numbers are also highly variable. 12% of people have no detectable B cells, 12% have reduced B cells, and 54% are within the normal range. In general, people with CVID display higher frequencies of naive B cells and lower frequencies of class-switched memory B cells. Frequencies of other B cell populations, such as IgD memory B cells, transitional B cells, and CD21 B cells, are also affected, and are associated with specific disease features. Although CVID is often thought of as a serum immunoglobulin and B cell-mediated disease, T cells can display abnormal behavior. Affected individuals typically present with low frequencies of CD4, a T-cell marker, and decreased circulation of regulatory T cells and iNKT cell. Notably, approximately 10% of people display CD4 T cell counts lower than 200 cells/mm; this particular phenotype of CVID has been named LOCID (Late Onset Combined Immunodeficiency), and has a poorer prognosis than classical CVID.
XLA diagnosis usually begins due to a history of recurrent infections, mostly in the respiratory tract, through childhood. This is due to humoral immunodeficiency. The diagnosis is probable when blood tests show the complete lack of circulating B cells (determined by the B cell marker CD19 and/or CD20), as well as low levels of all antibody classes, including IgG, IgA, IgM, IgE and IgD.
When XLA is suspected, it is possible to do a Western Blot test to determine whether the Btk protein is being expressed. Results of a genetic blood test confirm the diagnosis and will identify the specific Btk mutation, however its cost prohibits its use in routine screening for all pregnancies. Women with an XLA patient in their family should seek genetic counseling before pregnancy.Although the symptoms of a XLA and other primary immune diseases (PID) include repeated and often severe infections, the average time for a diagnosis of a PID can be up to 10 years.
When suspected, the diagnosis can be confirmed by laboratory measurement of IgA level in the blood. SigAD is an IgA level < 7 mg/dL with normal IgG and IgM levels (reference range 70–400 mg/dl for adults; children somewhat less).
Treatment for "B cell deficiency"(humoral immune deficiency) depends on the cause, however generally the following applies:
- Treatment of infection(antibiotics)
- Surveillance for malignancies
- Immunoglobulin replacement therapy
Five "types" of hyper IgM syndrome have been characterized:
- Hyper-IgM syndrome type 1 (X-linked), characterized by mutations of the "CD40LG" gene. In this type, T cells cannot tell B cells to switch classes.
- Hyper-IgM syndrome type 2 (autosomal recessive), characterized by mutations of the "AICDA" gene. In this type, B cells cannot recombine genetic material to change heavy chain production
- Hyper-IgM syndrome type 3 characterized by mutations of the "CD40" gene. In this type, B cells cannot receive the signal from T cells to switch classes.
- Hyper-IgM syndrome type 4 which is a defect in class switch recombination downstream of the AICDA gene that does not impair Somatic Hypermutation.
- Hyper-IgM syndrome type 5 characterized by mutations of the "UNG" gene.
Serology (detection on antibodies to a specific pathogen or antigen) is often used to diagnose viral diseases. Because XLA patients lack antibodies, these tests always give a negative result regardless of their real condition. This applies to standard HIV tests. Special blood tests (such as the western blot based test) are required for proper viral diagnosis in XLA patients.
It is not recommended and dangerous for XLA patients to receive live attenuated vaccines such as live polio, or the measles, mumps, rubella (MMR vaccine). Special emphasis is given to avoiding the oral live attenuated SABIN-type polio vaccine that has been reported to cause polio to XLA patients. Furthermore, it is not known if active vaccines in general have any beneficial effect on XLA patients as they lack normal ability to maintain immune memory.
XLA patients are specifically susceptible to viruses of the Enterovirus family, and mostly to: polio virus, coxsackie virus (hand, foot, and mouth disease) and Echoviruses. These may cause severe central nervous system conditions as chronic encephalitis, meningitis and death. An experimental anti-viral agent, pleconaril, is active against picornaviruses. XLA patients, however, are apparently immune to the Epstein-Barr virus (EBV), as they lack mature B cells (and so HLA co-receptors) needed for the viral infection. Patients with XLA are also more likely to have a history of septic arthritis.
It is not known if XLA patients are able to generate an allergic reaction, as they lack functional IgE antibodies.There is no special hazard for XLA patients in dealing with pets or outdoor activities. Unlike in other primary immunodeficiencies XLA patients are at no greater risk for developing autoimmune illnesses.
Agammaglobulinemia (XLA) is similar to the primary immunodeficiency disorder Hypogammaglobulinemia (CVID), and their clinical conditions and treatment are almost identical. However, while XLA is a congenital disorder, with known genetic causes, CVID may occur in adulthood and its causes are not yet understood.
XLA was also historically mistaken as Severe Combined Immunodeficiency (SCID), a much more severe immune deficiency ("Bubble boys").A strain of laboratory mouse, XID, is used to study XLA. These mice have a mutated version of the mouse Btk gene, and exhibit a similar, yet milder, immune deficiency as in XLA.
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
Prognosis is excellent, although there is an association with autoimmune disease. Of note, selective IgA deficiency can complicate the diagnosis of one such condition, celiac disease, as the deficiency masks the high levels of certain IgA antibodies usually seen in celiac disease.
As opposed to the related condition CVID, selective IgA deficiency is not associated with an increased risk of cancer.
Patients with Selective IgA deficiency are at risk of anaphylaxis from blood transfusions. These patients should receive IgA free containing blood products and ideally blood from IgA-deficient donors.
This form usually lessens in severity within two years of diagnosis.
The use of prophylactic antibiotics has been proposed.
See article at BioMed Central site:
A complete blood count (CBC) can be done to diagnose anemia (normochromic, normocytic), thrombocytopenia, and neutropenia. Abnormal liver function tests are commonly used to help in diagnosis as the spleen and liver are strongly affected by one another.
The cause of Felty's syndrome is unknown, but it has been found to be more common in those with chronic rheumatoid arthritis. Some patients have Human Leukocytic Antigen (HLA-DR4) in their serum. This syndrome is mostly present in people having extra articular manifestations of rheumatoid arthritis. People with this syndrome are at risk of infection because they have a low white blood cell count.
Autoimmune neutropenia is a form of neutropenia which is most common in infants and young children where the body identifies the neutrophils as enemies and makes antibody to destroy them.
Primary autoimmune neutropenia (AIN) is an autoimmune disease first reported in 1975 that primarily occurs in infancy. In autoimmune neutropenia, the immune system produces autoantibodies directed against the neutrophilic protein antigens in white blood cells known as granulocytic neutrophils (granulocytes, segmented neutrophils, segs, polysegmented neutrophils, polys). These antibodies destroy granulocytic neutrophils. Consequently, patients with autoimmune neutropenia have low levels of granulocytic neutrophilic white blood cells causing a condition of neutropenia. Neutropenia causes an increased risk of infection from organisms that the body could normally fight easily.
Who is Affected?
Primary autoimmune neutropenia has been reported as early as the second month of life although most cases are diagnosed in children between 5 and 15 months of age. Girls have a slightly higher risk of developing AIN than boys. In neutropenia discovered at birth or shortly after birth, a diagnosis of allo-immune neutropenia (from maternal white blood cell antibodies passively transferred to the infant) is more likely.
Neutropenia
In infants neutropenia is defined by absolute neutrophil counts less than 1000/uL. After the first year of life neutropenia is defined by absolute counts less than 1500/uL. Neutropenia may be primary in which it is the only blood abnormality seen. In secondary neutropenia, other primary conditions occur, including other autoimmune diseases, infections, and malignancies. Neutropenia is considered chronic when it persists for more than 6 months.
Symptoms and Disease Course
Neutropenia, which may be discovered on routine blood tests, typically causes benign infections even when the condition is severe. Ear infections (otitis media) are the most common infection seen in autoimmune neutropenia and typically infection responds to antibiotic treatment alone. Infections associated with primary AIN are usually mild and limited, including skin infections such as impetigo, gastroenteritis, upper respiratory tract infections, and ear infections. Rarely, cellulitis and abscesses may occur.
Studies of children studied for up to six years showed that most cases of autoimmune neutropenia resolved spontaneously after a median of 17 months. In 80 percent of patients, neutropenia persisted for 7 to 24 months.
Diagnosis
Patients with autoimmune neutropenia are diagnosed on the basis of blood tests showing neutropenia and the presence of granulocyte-specific antibodies. In some cases, tests for granulocyte-specific antibodies need to be repeated several times before a positive result is seen. Bone marrow aspiration, if performed, is typically normal or it can show increased cell production with a variably diminished number of segmented granulocytes.
s association with prior parvovirus B19 has been made, but this hasn’t been confirmed. Similar to the platelet deficiency idiopathic thrombocytopenic purpura, vaccines are suspected of triggering this disorder.
Treatment
Treatment consists of corticosteroids to reduce autoantibody production, antibiotics to prevent infection and granulocyte colony-stimulating factor (G-CSF) to temporarily increase neutrophil counts. In cases of severe infection or the need for surgery, intravenous immunoglobulin therapy may be used.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
A diagnosis can only be definitively made after genetic testing to look for a mutation in the "DOCK8" gene. However, it can be suspected with a high IgE level and eosinophilia. Other suggestive laboratory findings include decreased numbers of B cells, T cells, and NK cells; and hypergammaglobulinemia. It can be distinguished from autosomal dominant hyper-IgE (STAT3 deficiency) because people with DOCK8 deficiency have low levels of IgM and an impaired secondary immune response. IgG and IgA levels are usually normal to high. It can be distinguished from the similar X-linked Wiskott–Aldrich syndrome by the presence of thrombocytopenia and the consequent bloody diarrhea, as well as its pattern of inheritance. WHIM syndrome, caused by a mutation in CXCR4, is associated with similar chronic cutaneous viral infections.
The diagnosis is made after a complete blood count, a routine blood test. The absolute neutrophil count in this test will be below 500, and can reach 0 cells/mm³. Other kinds of blood cells are typically present in normal numbers.
To formally diagnose agranulocytosis, other pathologies with a similar presentation must be excluded, such as aplastic anemia, paroxysmal nocturnal hemoglobinuria, myelodysplasia and leukemias. This requires a bone marrow examination that shows normocellular (normal amounts and types of cells) blood marrow with underdeveloped promyelocytes. These underdeveloped promyelocytes, if fully matured, would have been the missing granulocytes.
The only treatment for Omenn syndrome is chemotherapy followed by a bone marrow transplantation. Without treatment, it is rapidly fatal in infancy.
The diagnosis of Nezelof syndrome will indicate a deficiency of T-cells, additionally in ascertaining the condition the following is done:
Immunodeficiency with hyper IgM type 4 is poorly characterized. All that is known is that there is an excess of IgM in the blood, with normal levels of the other immunoglobulins. The exact cause is yet to be determined.
The differential diagnosis for this condition consists of acquired immune deficiency syndrome and severe combined immunodeficiency syndrome
In patients that have no symptoms of infection, management consists of close monitoring with serial blood counts, withdrawal of the offending agent (e.g., medication), and general advice on the significance of fever.
Transfusion of granulocytes would have been a solution to the problem. However, granulocytes live only ~10 hours in the circulation (for days in spleen or other tissue), which gives a very short-lasting effect. In addition, there are many complications of such a procedure.
Isolated primary immunoglobulin M deficiency (or selective IgM immunodeficiency (SIgMD)) is a poorly defined dysgammaglobulinemia characterized by decreased levels of IgM while levels of other immunoglobulins are normal. The immunodeficiency has been associated with some clinical disorders including recurrent infections, atopy, Bloom's syndrome, celiac disease, systemic lupus erythematosus and malignancy, but, surprisingly, SIgMD seems to also occur in asymptomatic individuals. High incidences of recurrent upper respiratory tract infections (77%), asthma (47%) and allergic rhinitis (36%) have also been reported. SIgMD seems to be a particularly rare antibody deficiency with a reported prevalence between 0.03% (general population) and 0.1% (hospitalized patients).
The cause of selective IgM deficiency remains unclear, although various mechanisms have been proposed, such as an increase in regulatory T cell functions, defective T helper cell functions and impaired terminal differentiation of B lymphocytes into IgM-secreting cells among others. It is however puzzling that class switching seems to happen normally (serum levels of other antibodies are normal), while dysfunctioning of IgM synthesis is expected to occur together with abnormalities in other immunoglobulins. Notwithstanding a clear pathogenesis and commonly accepted definition, a cutoff for SIgMD could be the lower limit of the serum IgM reference range, such as 43 mg/dL in adults or even 20 mg/dL.
All patients with symptomatic cryoglobulinemia are advised to avoid, or protect their extremities, from exposure to cold temperatures. Refrigerators, freezers, and air-conditioning represent dangers of such exposure.