Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis can be made by EEG. In case of epileptic spasms, EEG shows typical patterns.
Diagnosis of Harlequin syndrome is made when the individual has consistent signs and symptoms of the condition, therefore, it is made by clinical observation. In addition, a neurologist or primary care physician may require an MRI test to rule out similar disorders such as Horner's syndrome, Adie's syndrome, and Ross' syndrome. In an MRI, a radiologist may observe areas near brain or spinal cord for lesions, or any damage to the nerve endings. It is also important that the clinician rules out traumatic causes by performing autonomic function tests. Such tests includes the following: tilt table test, orthostatic blood pressure measurement, head-up test, valsalva maneuver, thermoregulatory sweat test, tendon reflex test, and electrocardiography (ECG). CT scan of the heart and lungs may also be performed to rule out a structural underlying lesion. The medical history of the individual should be carefully noted.
Gourmand syndrome is a rare, benign condition that sometimes occurs in people who sustain injuries to the right frontal lobe. These people develop a new, post-injury passion for gourmet food. It was first described by Regard and Landis in the journal "Neurology". It is characterized by a right hemisphere brain lesion and a obsessive focus on eating, thinking, talking, and writing about fine foods. However, it is not associated with an increase in appetite.
The most famous case of gourmand syndrome developed in a Swiss stroke patient. After his release from the hospital he immediately quit his job as a political journalist and took up the profession of food critiquing.
About 92% of pregnancies in Europe with a diagnosis of Down syndrome are terminated. In the United States, termination rates are around 67%, but this rate varied from 61% to 93% among different populations evaluated. When nonpregnant people are asked if they would have a termination if their fetus tested positive, 23–33% said yes, when high-risk pregnant women were asked, 46–86% said yes, and when women who screened positive are asked, 89–97% say yes.
Carrier testing for Roberts syndrome requires prior identification of the disease-causing mutation in the family. Carriers for the disorder are heterozygotes due to the autosomal recessive nature of the disease. Carriers are also not at risk for contracting Roberts syndrome themselves. A prenatal diagnosis of Roberts syndrome requires an ultrasound examination paired with cytogenetic testing or prior identification of the disease-causing ESCO2 mutations in the family.
Occasionally the syndrome is referred to as "idiopathic" West syndrome, when a cause cannot be determined. Important diagnostic criteria are:
- Regular development until the onset of the attacks or before the beginning of the therapy
- no pathological findings in neurological or neuroradiological studies
- no evidence of a trigger for the spasms
Those are becoming rare due to modern medicine.
Diagnosis depends on the clinical scenario. However, karyotyping is an essential test for diagnosis.
In August 2016, researchers at the Instituto de Assistência dos Servidores do Estado do Rio de Janeiro used botulinum toxin as a method to block the acetylcholine release from the presynaptic neurons. Although they have seen a reduction in one sided flushing, sweating still occurs.
There have been case studies of individuals whom have experienced this syndrome after an operation. Two patients, a 37-year-old and 58-year-old female patients suffering from metastatic cancer were scheduled for placement of an intrathecal pump drug delivery system. After the intrathecal pump was placed, certain medications were given to the patients. Once the medications were administered, both patients had one sided facial flushes, closely resembling Harlequin Syndrome. Patients were given neurological exams to confirm that their nerves were still intact. An MRI was performed and showed no significant evidence of bleeding or nerve compression. After close observation for 16 hours, symptoms of the Harlequin syndrome was diminished and both patients did not have another episode.
Another case study was based on a 6-year-old male visiting an outpatient setting for one sided flushes during or after physical activity or exposed to heat. Vitals, laboratory tests, and CT scans were normal. Along with the flushes, the right pupil was 1.5 mm in size, while the left pupil was 2.5 mm in size; however, no ptosis, miosis, or enophthalmos was noted. The patient also had an MRI scan to rule out any lesion near the brain or spinal cord. No abnormalities were noted and the patient did not receive any treatments. The patient was diagnosed with idiopathic Harlequin syndrome.
Although the mechanism is still unclear, the pathophysiology of this condition, close monitoring, and reassurance are vital factors for successful management.
After the first discovery and description of Marshall–Smith syndrome in 1971, research to this rare syndrome has been carried out.
- Adam, M., Hennekam, R.C.M., Butler, M.G., Raf, M., Keppen, L., Bull, M., Clericuzio, C., Burke, L., Guttacher, A., Ormond, K., & Hoyme, H.E. (2002). Marshall–Smith syndrome: An osteochondrodysplasia with connective tissue abnormalities. 23rd Annual David W. Smith Workshop on Malformations and Morphogenesis, August 7, Clemson, SC.
- Adam MP, Hennekam RC, Keppen LD, Bull MJ, Clericuzio CL, Burke LW, Guttmacher AE, Ormond KE and Hoyme HE: Marshall-Smith Syndrome: Natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities. American Journal of Medical Genetics 137A:117–124, 2005.
- Baldellou Vazquez A, Ruiz-Echarri Zelaya MP, Loris Pablo C, Ferr#{225}ndez Longas A, Tamparillas Salvador M. El sIndrome de Marshall-Smith: a prop#{243}sito de una observad#{243}n personal. An Esp Pediatr 1983; 18:45-50.
- Butler, M.G. (2003). Marshall–Smith syndrome. In: The NORD Guide to Rare Disorders. (pp219–220) Lippincott, Williams & Wilkins, Philadelphia, PA.
- Charon A, Gillerot T, Van Maldergem L, Van Schaftingen MH, de Bont B, Koulischer L. The Marshall–Smith syndrome. Eur J Pediatr 1990; 150: 54-5.
- Dernedde, G., Pendeville, P., Veyckemans, F., Verellen, G. & Gillerot, Y. (1998). Anaesthetic management of a child with Marshall–Smith syndrome. Canadian Journal of Anesthesia. 45 (7): 660. Anaesthetic management of a child with Marshall-Smith syndrome
- Diab, M., Raff, M., Gunther, D.F. (2002). Osseous fragility in Marshall–Smith syndrome. Clinical Report: Osseous fragility in Marshall-Smith syndrome
- Ehresmann, T., Gillessen-Kaesbach G., Koenig R. (2005). Late diagnosis of Marshall Smith Syndrome (MSS). In: Medgen 17.
- Hassan M, Sutton T, Mage K, LimalJM, Rappaport R. The syndrome of accelerated bone maturation in the newborn infant with dysmorphism and congenital malformations: (the so-called Marshall–Smith syndrome). Pediatr Radiol 1976; 5:53-57.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. Western Society for Pediatric Research, Carmel, California, February, 1987. Clin Res 35:68A, 1987.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. David W. Smith Morphogenesis and Malformations Workshop. Greenville, SC, August, 1987. Proceedings of the Greenwood Genetics Center 7:152, 1988.
- Hoyme HE, Byers PH, Guttmacher AE: Marshall–Smith syndrome: Further evidence of an osteochondrodysplasia in long-term survivors. David W. Smith Morphogenesis and Malformations Workshop, Winston-Salem, NC, August, 1992. Proceedings of the Greenwood Genetic Center 12:70, 1993.
- .
- Tzu-Jou Wang (2002). Marshall–Smith syndrome in a Taiwanese patient with T-cell immunodeficiency. Am J Med Genet Part A;112 (1):107-108.
When screening tests predict a high risk of Down syndrome, a more invasive diagnostic test (amniocentesis or chorionic villus sampling) is needed to confirm the diagnosis. If Down syndrome occurs in one in 500 pregnancies and the test used has a 5% false-positive rate, this means, of 26 women who test positive on screening, only one will have Down syndrome confirmed. If the screening test has a 2% false-positive rate, this means one of eleven who test positive on screening have a fetus with DS. Amniocentesis and chorionic villus sampling are more reliable tests, but they increase the risk of miscarriage between 0.5 and 1%. The risk of limb problems is increased in the offspring due to the procedure. The risk from the procedure is greater the earlier it is performed, thus amniocentesis is not recommended before 15 weeks gestational age and chorionic villus sampling before 10 weeks gestational age.
There is an association between taking aspirin for viral illnesses and the development of Reye syndrome, but no animal model of Reye syndrome has been developed in which aspirin causes the condition.
The serious symptoms of Reye syndrome appear to result from damage to cellular mitochondria, at least in the liver, and there are a number of ways that aspirin could cause or exacerbate mitochondrial damage. A potential increased risk of developing Reye syndrome is one of the main reasons that aspirin has not been recommended for use in children and teenagers, the age group for which the risk of lasting serious effects is highest.
No research has found a definitive cause of Reye syndrome, and association with aspirin has been shown through epidemiological studies. The diagnosis of "Reye Syndrome" greatly decreased in the 1980s, when genetic testing for inborn errors of metabolism was becoming available in developed countries. A retrospective study of 49 survivors of cases diagnosed as "Reye's Syndrome" showed that the majority of the surviving patients had various metabolic disorders, particularly a fatty-acid oxidation disorder medium-chain acyl-CoA dehydrogenase deficiency.
In some countries, oral mouthcare product Bonjela (not the form specifically designed for teething) has labeling cautioning against its use in children, given its salicylate content. There have been no cases of Reye syndrome following its use, and the measure is a precaution. Other medications containing salicylates are often similarly labeled as a precaution.
The Centers for Disease Control and Prevention (CDC), the U.S. Surgeon General, the American Academy of Pediatrics (AAP) and the Food and Drug Administration (FDA) recommend that aspirin and combination products containing aspirin not be given to children under 19 years of age during episodes of fever-causing illnesses. Hence, in the United States, it is advised that the opinion of a doctor or pharmacist should be obtained before anyone under 19 years of age is given any medication containing aspirin (also known on some medicine labels as acetylsalicylate, salicylate, acetylsalicylic acid, ASA, or salicylic acid).
Current advice in the United Kingdom by the Committee on Safety of Medicines is that aspirin should not be given to those under the age of 16 years, unless specifically indicated in Kawasaki disease or in the prevention of blood clot formation.
Cytogenetic preparations that have been stained by either Giemsa or C-banding techniques will show two characteristic chromosomal abnormalities. The first chromosomal abnormality is called premature centromere separation (PCS) and is the most likely pathogenic mechanism for Roberts syndrome. Chromosomes that have PCS will have their centromeres separate during metaphase rather than anaphase (one phase earlier than normal chromosomes). The second chromosomal abnormality is called heterochromatin repulsion (HR). Chromosomes that have HR experience separation of the heterochromatic regions during metaphase. Chromosomes with these two abnormalities will display a "railroad track" appearance because of the absence of primary constriction and repulsion at the heterochromatic regions. The heterochromatic regions are the areas near the centromeres and nucleolar organizers. Carrier status cannot be determined by cytogenetic testing. Other common findings of cytogenetic testing on Roberts syndrome patients are listed below.
- Aneuploidy- the occurrence of one or more extra or missing chromosomes
- Micronucleation- nucleus is smaller than normal
- Multilobulated Nuclei- the nucleus has more than one lobe
Genetic testing may be available for mutations in the FGDY1 gene. Genetic counseling is indicated for individuals or families who may carry this condition, as there are overlapping features with fetal alcohol syndrome.
Other examinations or tests can help with diagnosis. These can include:
detailed family history
- conducting a detailed physical examination to document morphological features
- testing for genetic defect in FGDY1
- x-rays can identify skeletal abnormalities
- echo cardiogram can screen for heart abnormalities
- CT scan of the brain for cystic development
- X-ray of the teeth
- Ultrasound of abdomen to identify undescended testis
Marshall–Smith syndrome is not to be confused with:
- Marshall syndrome (aka.Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA syndrome, see also: Periodic fever syndrome)
- Sotos (like) syndrome
- Weaver-Smith syndrome (WSS)
Screening generally only takes place among those displaying several of the symptoms of ABCD, but a study on a large group of institutionalized deaf people in Columbia revealed that 5.38% of them were Waardenburg patients. Because of its rarity, none of the patients were diagnosed with ABCD (Waardenburg Type IV). Nothing can be done to prevent the disease.
Diagnosis is usually based on clinical findings, although fetal chromosome testing will show trisomy 13. While many of the physical findings are similar to Edwards syndrome there are a few unique traits, such as polydactyly. However, unlike Edwards syndrome and Down syndrome, the quad screen does not provide a reliable means of screening for this disorder. This is due to the variability of the results seen in fetuses with Patau.
According to the Williams Syndrome Association, diagnosis of Williams syndrome begins with recognition of physical symptoms and markers, which is followed by a confirmatory genetic test. The physical signs that often indicate a suspected case of Williams syndrome include puffiness around the eyes, a long philtrum, and a pattern in the iris. Physiological symptoms that often contribute to a Williams syndrome diagnosis are cardiovascular problems, particularly aortic or pulmonary stenosis, as well as feeding disturbance in infants. Developmental delays are often taken as an initial sign of the syndrome, as well.
If a physician suspects a case of Williams syndrome, the diagnosis is confirmed using one of two possible genetic tests: micro-array analysis or the fluorescent in situ hybridization (FISH) test. The FISH test examines chromosome #7 and probes for the existence of two copies of the elastin gene. Since 98-99% of individuals with Williams syndrome lack half of the 7q11.23 region of chromosome #7, where the elastin gene is located, the presence of only one copy of the gene is a strong sign of the syndrome. This confirmatory genetic test has been validated in epidemiological studies of the syndrome, and has been demonstrated to be a more effective method of identifying Williams syndrome than previous methods, which often relied on the presence of cardiovascular problems and facial features (which, while common, are not always present).
Some diagnostic studies suggest that reliance on facial features to identify Williams syndrome may cause a misdiagnosis of the condition. Among the more reliable features suggestive of Williams are congenital heart disease, periorbital fullness ("puffy" eyes), and the presence of a long smooth philtrum. Less reliable signs of the syndrome include anteverted nostrils, a wide mouth, and an elongated neck. Researchers indicate that even with significant clinical experience, it is difficult to reliably identify Williams syndrome based on facial features alone.
Diagnosis of oculocerebrorenal syndrome can be done via genetic testing Among the different investigations that can de done are:
- Urinalysis
- MRI
- Blood test
The diagnosis of this syndrome can be made on clinical examination and perinatal autopsy.
Koenig and Spranger (1986) noted that eye lesions are apparently nonobligatory components of the syndrome. The diagnosis of Fraser syndrome should be entertained in patients with a combination of acrofacial and urogenital malformations with or without cryptophthalmos. Thomas et al. (1986) also emphasized the occurrence of the cryptophthalmos syndrome without cryptophthalmos and proposed diagnostic criteria for Fraser syndrome. Major criteria consisted of cryptophthalmos, syndactyly, abnormal genitalia, and positive family history. Minor criteria were congenital malformation of the nose, ears, or larynx, cleft lip and/or palate, skeletal defects, umbilical hernia, renal agenesis, and mental retardation. Diagnosis was based on the presence of at least 2 major and 1 minor criteria, or 1 major and 4 minor criteria.
Boyd et al. (1988) suggested that prenatal diagnosis by ultrasound examination of eyes, digits, and kidneys should detect the severe form of the syndrome. Serville et al. (1989) demonstrated the feasibility of ultrasonographic diagnosis of the Fraser syndrome at 18 weeks' gestation. They suggested that the diagnosis could be made if 2 of the following signs are present: obstructive uropathy, microphthalmia, syndactyly, and oligohydramnios. Schauer et al. (1990) made the diagnosis at 18.5 weeks' gestation on the basis of sonography. Both the female fetus and the phenotypically normal father had a chromosome anomaly: inv(9)(p11q21). An earlier born infant had Fraser syndrome and the same chromosome 9 inversion.
Van Haelst et al. (2007) provided a revision of the diagnostic criteria for Fraser syndrome according to Thomas et al. (1986) through the addition of airway tract and urinary tract anomalies to the major criteria and removal of mental retardation and clefting as criteria. Major criteria included syndactyly, cryptophthalmos spectrum, urinary tract abnormalities, ambiguous genitalia, laryngeal and tracheal anomalies, and positive family history. Minor criteria included anorectal defects, dysplastic ears, skull ossification defects, umbilical abnormalities, and nasal anomalies. Cleft lip and/or palate, cardiac malformations, musculoskeletal anomalies, and mental retardation were considered uncommon. Van Haelst et al. (2007) suggested that the diagnosis of Fraser syndrome can be made if either 3 major criteria, or 2 major and 2 minor criteria, or 1 major and 3 minor criteria are present in a patient.
Diagnosis involves consideration of physical features and genetic testing. Presence of split uvula is a differentiating characteristic from Marfan Syndrome, as well as the severity of the heart defects. Loeys-Dietz Syndrome patients have more severe heart involvement and it is advised that they be treated for enlarged aorta earlier due to the increased risk of early rupture in Loeys-Dietz patients. Because different people express different combinations of symptoms and the syndrome was identified in 2005, many doctors may not be aware of its existence, although clinical guidelines were released in 2014-2015. Dr. Harold Dietz, Dr. Bart Loeys, and Dr. Kenneth Zahka are considered experts in this condition.
Diagnosis is made based on features as well as by the very early onset of serious eye and ear disease. Because Marshall syndrome is an autosomal dominant hereditary disease, physicians can also note the characteristic appearance of the biological parent of the child. There are no tests for Stickler syndrome or Marshall syndrome. Some families with Stickler syndrome have been shown to have mutations in the Type II collagen gene on chromosome 1. However, other families do not show the linkage to the collagen gene. It is an area of active research, also the genetic testing being expensive supports that the diagnosis is made depending on the features.
Documented cases of Reye syndrome in adults are rare. The recovery of adults with the syndrome is generally complete, with liver and brain function returning to normal within two weeks of onset. In children, however, mild to severe permanent brain damage is possible, especially in infants. Over thirty percent of the cases reported in the United States from 1981 through 1997 resulted in fatality.
In terms of the diagnosis of Romano–Ward syndrome the following is done to ascertain the condition(the "Schwartz Score" helps in so doing):
- Exercise test
- ECG
- Family history
The occurrence of WS has been reported to be one in 45,000 in Europe. The diagnosis can be made prenatally by ultrasound due to the phenotype displaying pigmentary disturbances, facial abnormalities, and other developmental defects. After birth, the diagnosis is initially made symptomatically and can be confirmed through genetic testing. If the diagnosis is not made early enough, complications can arise from
Hirschsprung's disease.
In terms of diagnosing Bannayan–Riley–Ruvalcaba syndrome there is no current method outside the physical characteristics that may be present as signs/symptoms. There are, however, multiple molecular genetics tests (and cytogenetic test) to determine Bannayan–Riley–Ruvalcaba syndrome.