Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Azoospermia is usually detected in the course of an infertility investigation. It is established on the basis of two semen analysis evaluations done at separate occasions (when the seminal specimen after centrifugation shows no sperm under the microscope) and requires a further work-up.
The investigation includes a history, a physical examination including a thorough evaluation of the scrotum and testes, laboratory tests, and possibly imaging. History includes the general health, sexual health, past fertility, libido, and sexual activity. Past exposure to a number of agents needs to be queried including medical agents like hormone/steroid therapy, antibiotics, 5-ASA inhibitors (sulfasalazine), alpha-blockers, 5 alpha-reductase inhibitors, chemotherapeutic agents, pesticides, recreational drugs (marijuana, excessive alcohol), and heat exposure of the testes. A history of surgical procedures of the genital system needs to be elicited. The family history needs to be assessed to look for genetic abnormalities.
Congenital absence of the vas deferens may be detectable on physical examination and can be confirmed by a transrectal ultrasound (TRUS). If confirmed genetic testing for cystic fibrosis is in order. Transrectal ultrasound can also assess azoospermia caused by obstruction, or anomalies related to obstruction of the ejaculatory duct, such as abnormalities within the duct itself, a median cyst of the prostate (indicating a need for cyst aspiration), or an impairment of the seminal vesicles to become enlarged or emptied.
Retrograde ejaculation is diagnosed by examining a postejaculatory urine for presence of sperm after making it alkaline and centifuging it.
Low levels of LH and FSH with low or normal testosterone levels are indicative of pretesticular problems, while high levels of gonadotropins indicate testicular problems. However, often this distinction is not clear and the differentiation between obstructive versus non-obstructive azoospermia may require a testicular biopsy. On the other hand, "In azoospermic men with a normal ejaculate volume, FSH serum level greater than two times the upper limit of the normal range is reliably diagnostic of dysfunctional spermatogenesis and, when found, a diagnostic testicular biopsy is usually unnecessary, although no consensus exists in this matter." But also, extremely high levels of FSH (>45 ID/mL) have been correlated with successful microdissection testicular sperm extraction.
Serum inhibin-B weakly indicates presence of sperm cells in the testes, raising chances for successfully achieving pregnancy through testicular sperm extraction (TESE), although the association is not very substantial, having a sensitivity of 0.65 (95% confidence interval [CI]: 0.56–0.74) and a specificity of 0.83 (CI: 0.64–0.93) for prediction the presence of sperm in the testes in non-obstructive azoospermia.
Seminal plasma proteins TEX101 and ECM1 were recently proposed for the differential diagnosis of azoospermia forms and subtypes, and for prediction of TESE outcome. Mount Sinai Hospital, Canada started clinical trial to test this hypothesis in 2016.
It is recommended that men primary hypopituitarism may be linked to a genetic cause, a genetic evaluation is indicated in men with azoospermia due to primary hypopituitarism. Azoospermic men with testicular failure are advised to undergo karyotype and Y-micro-deletion testing.
MAIS is only diagnosed in normal phenotypic males, and is not typically investigated except in cases of male infertility. MAIS has a mild presentation that often goes unnoticed and untreated; even with semenological, clinical and laboratory data, it can be difficult to distinguish between men with and without MAIS, and thus a diagnosis of MAIS is not usually made without confirmation of an AR gene mutation. The androgen sensitivity index (ASI), defined as the product of luteinizing hormone (LH) and testosterone (T), is frequently raised in individuals with all forms of AIS, including MAIS, although many individuals with MAIS have an ASI in the normal range. Testosterone levels may be elevated despite normal levels of luteinizing hormone. Conversion of testosterone (T) to dihydrotestosterone (DHT) may be impaired, although to a lesser extent than is seen in 5α-reductase deficiency. A high ASI in a normal phenotypic male, especially when combined with azoospermia or oligospermia, decreased secondary terminal hair, and/or impaired conversion of T to DHT, can be indicative of MAIS, and may warrant genetic testing.
Some strategies suggested or proposed for avoiding male infertility include the following:
- Avoiding smoking as it damages sperm DNA
- Avoiding heavy marijuana and alcohol use.
- Avoiding excessive heat to the testes.
- Maintaining optimal frequency of coital activity: sperm counts can be depressed by daily coital activity and sperm motility may be depressed by coital activity that takes place too infrequently (abstinence 10–14 days or more).
- Wearing a protective cup and jockstrap to protect the testicles, in any sport such as baseball, football, cricket, lacrosse, hockey, softball, paintball, rodeo, motorcross, wrestling, soccer, karate or other martial arts or any sport where a ball, foot, arm, knee or bat can come into contact with the groin.
- Diet: Healthy diets (i.e. the Mediterranean diet) rich in such nutrients as omega-3 fatty acids, some antioxidants and vitamins, and low in saturated fatty acids (SFAs) and trans-fatty acids (TFAs) are inversely associated with low semen quality parameters. In terms of food groups, fish, shellfish and seafood, poultry, cereals, vegetables and fruits, and low-fat dairy products have been positively related to sperm quality. However, diets rich in processed meat, soy foods, potatoes, full-fat dairy products, coffee, alcohol and sugar-sweetened beverages and sweets have been inversely associated with the quality of semen in some studies. The few studies relating male nutrient or food intake and fecundability also suggest that diets rich in red meat, processed meat, tea and caffeine are associated with a lower rate of fecundability. This association is only controversial in the case of alcohol. The potential biological mechanisms linking diet with sperm function and fertility are largely unknown and require further study.
Common hormonal test include determination of FSH and testosterone levels. A blood sample can reveal genetic causes of infertility, e.g. Klinefelter syndrome, a Y chromosome microdeletion, or cystic fibrosis.
Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by "AR" gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.
Unfortunately, the number of differentials to consider for PAIS is particularly large. Prompt diagnosis is particularly urgent when a child is born with ambiguous genitalia, as some causes are associated with potentially life-threatening adrenal crises. Determination of testosterone, testosterone precursors and dihydrotestosterone (DHT) at baseline and / or after human chorionic gonadotropin (hCG) stimulation can be used to exclude such defects in androgen biosynthesis.
Approximately one half of all 46,XY individuals born with ambiguous genitalia will not receive a definitive diagnosis. Androgen receptor (AR) gene mutations cannot be found in 27% to 72% of individuals with PAIS. As a result, genetic analysis can be used to confirm a diagnosis of PAIS, but it cannot be used to rule out PAIS. Evidence of abnormal androgen binding in a genital skin fibroblast study has long been the gold standard for the diagnosis of PAIS, even when an AR mutation is not present. However, some cases of PAIS, including AR-mutant-positive cases, will show normal androgen binding. A family history consistent with X-linked inheritance is more commonly found in AR-mutant-positive cases than AR-mutant-negative cases.
The use of dynamic endocrine tests is particularly helpful in isolating a diagnosis of PAIS. One such test is the human chorionic gonadotropin (hCG) stimulation test. If the gonads are testes, there will be an increase in the level of serum testosterone in response to the hCG, regardless of testicular descent. The magnitude of the testosterone increase can help differentiate between androgen resistance and gonadal dysgenesis, as does evidence of a uterus on ultrasound examination. Testicular function can also be assessed by measuring serum anti-Müllerian hormone levels, which in turn can further differentiate PAIS from gonadal dysgenesis and bilateral anorchia.
Another useful dynamic test involves measuring the response to exogenous steroids; individuals with AIS show a decreased response in serum sex hormone binding globulin (SHBG) after a short term administration of anabolic steroids. Two studies indicate that measuring the response in SHBG after the administration of stanozolol could help to differentiate individuals with PAIS from those with other causes of ambiguous genitalia, although the response in individuals with predominantly male phenotypes overlaps somewhat with the response in normal males.
Gonadectomy at time of diagnosis is the current recommendation for PAIS if presenting with cryptorchidism, due to the high (50%) risk of germ cell malignancy. The risk of malignancy when testes are located intrascrotally is unknown; the current recommendation is to biopsy the testes at puberty, allowing investigation of at least 30 seminiferous tubules, with diagnosis preferably based on OCT3/4 immunohistochemistry, followed by regular examinations. Hormone replacement therapy is required after gonadectomy, and should be modulated over time to replicate the hormone levels naturally present in the body during the various stages of puberty. Artificially induced puberty results in the same, normal development of secondary sexual characteristics, growth spurt, and bone mineral accumulation. Women with PAIS may have a tendency towards bone mineralization deficiency, although this increase is thought to be less than is typically seen in CAIS, and is similarly managed.
CAIS can only be diagnosed in normal phenotypic females. It is not usually suspected unless the menses fail to develop at puberty, or an inguinal hernia presents during premenarche. As many as 1–2% of prepubertal girls that present with an inguinal hernia will also have CAIS.
A diagnosis of CAIS or Swyer syndrome can be made in utero by comparing a karyotype obtained by amniocentesis with the external genitalia of the fetus during a prenatal ultrasound. Many infants with CAIS do not experience the normal, spontaneous neonatal testosterone surge, a fact which can be diagnostically exploited by obtaining baseline luteinizing hormone and testosterone measurements, followed by a human chorionic gonadotropin (hGC) stimulation test.
The main differentials for CAIS are complete gonadal dysgenesis (Swyer syndrome) and Müllerian agenesis (Mayer-Rokitansky-Kuster-Hauser syndrome or MRKH). Both CAIS and Swyer syndrome are associated with a 46,XY karyotype, whereas MRKH is not; MRKH can thus be ruled out by checking for the presence of a Y chromosome, which can be done either by fluorescence in situ hybridization (FISH) analysis or on full karyotype. Swyer syndrome is distinguished by poor breast development and shorter stature. The diagnosis of CAIS is confirmed when androgen receptor (AR) gene sequencing reveals a mutation, although up to 5% of individuals with CAIS do not have an AR mutation.
Up until the 1990s, a CAIS diagnosis was often hidden from the affected individual and / or family. It is current practice to disclose the genotype at the time of diagnosis, particularly when the affected girl is at least of adolescent age. If the affected individual is a child or infant, it is generally up to the parents, often in conjunction with a psychologist, to decide when to disclose the diagnosis.
Individuals with CAIS are raised as females. They are born phenotypically female and almost always have a heterosexual female gender identity; the incidence of homosexuality in women with CAIS is thought to be less than unaffected women. However, at least two case studies have reported male gender identity in individuals with CAIS.
The third indicator is the presence of clues to specific disorders of the reproductive system.
- Malnutrition or anorexia nervosa severe enough to delay puberty will give other clues as well.
- Poor growth would suggest the possibility of coeliac disease, hypopituitarism or Turner syndrome.
- Reduced sense of smell (hyposmia) or no sense of smell (anosmia) suggests Kallmann syndrome.
Since the Sertoli cells are not affected by Leydig cell hypoplasia, anti-Müllerian hormone is secreted normally and so there are no Müllerian structures. Wolffian structures, such as the prostate, vasa deferentia, and epidydimides are present. In type I, abdominal testes are revealed on ultrasound; in type II testes may be descended or undescended.
People with Leydig cell hypoplasia type I display no response to the hCG stimulation test; there is no increase in serum levels of testosterone and dihydrotestosterone. Leydig cell hypoplasia type II can display either a pronounced rise of testosterone levels or no rise.
In any case, the diagnosis is confirmed on biopsy of the testes, revealing either absent or hypoplastic Leydig cells. The inside of the testis will be grayish and mucous, displaying arrested spermatogenesis and the presence of Sertoli cells. The diagnosis can also be confirmed by looking for mutations in the gene for the LH receptor.
A diagnosis of Leydig cell hypoplasia is usually made in the neonatal period, following the discovery of ambiguous genitalia, or at puberty, when secondary sex characteristics fail to develop. Puberty is the most common time for Leydig cell hypoplasia to be diagnosed.
Patients with Leydig cell hypoplasia may be treated with hormone replacement therapy (i.e., with androgens), which will result in normal sexual development and the resolution of most symptoms. In the case of 46,XY (genetically "male") individuals who are phenotypically female and/or identify as the female gender, estrogens should be given instead. Surgical correction of the genitals in 46,XY males may be required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well.
The first is simply degree of lateness: although no recommended age of evaluation cleanly separates pathologic from physiologic delay, a delay of 2–3 years or more warrants evaluation.
- In girls, no breast development by 13 years, or no menarche by 3 years after breast development (or by 16).
- In boys, no testicular enlargement by 14 years, or delay in development for 5 years or more after onset of genitalia enlargement.
A delay of two standard deviations has been proposed as a standard.
Preimplantation genetic diagnosis (PGD or PIGD) refers to genetic profiling of embryos prior to implantation (as a form of embryo profiling), and sometimes even of oocytes prior to fertilization. When used to screen for a specific genetic sequence, its main advantage is that it avoids selective pregnancy termination, as the method makes it highly likely that a selected embryo will be free of the condition under consideration.
In the UK, AIS appears on a list of serious genetic diseases that may be screened for via PGD. Some ethicists, clinicians, and intersex advocates have argued that screening embryos to specifically exclude intersex traits are based on social and cultural norms as opposed to medical necessity.
Due to its mild presentation, MAIS often goes unnoticed and untreated. Management of MAIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Treatment includes surgical correction of mild gynecomastia, minor hypospadias repair, and testosterone supplementation. Supraphysiological doses of testosterone have been shown to correct diminished secondary sexual characteristics in men with MAIS, as well as to reverse infertility due to low sperm count. As is the case with PAIS, men with MAIS will experience side effects from androgen therapy (such as the suppression of the hypothalamic-pituitary-gonadal axis) at a higher dosage than unaffected men. Careful monitoring is required to ensure the safety and efficacy of treatment. Regular breast and prostate examinations may be necessary due to comorbid association with breast and prostate cancers.
Transvaginal ultrasonography can be used to determine antral follicle count (AFC). This is an easy-to-perform and noninvasive method (but there may be some discomfort). Several studies show this test to be more accurate than basal FSH testing for older women (< 44 years of age) in predicting IVF outcome. This method of determining ovarian reserve is recommended by Dr. Sherman J. Silber, author and medical director of the Infertility Center of St. Louis.
AFC and Median Fertile Years Remaining
Note, the above table from Silber's book may be in error as it has no basis in any scientific study, and contradicts data from Broekmans, et al. 2004 study. The above table closely matches Broekmans' data only if interpreted as the total AFC of both ovaries. Only antral follicles that were 2–10 mm in size were counted in Broekmans' study.
Age and AFC and Age of Loss of Natural Fertility (See Broekmans, et al. [2004])
AFC and FSH Stimulation Recommendations for Cycles Using Assisted Reproduction Technology
Hormone replacement therapy with estrogen may be used to treat symptoms of hypoestrogenism in females with the condition. There are currently no known treatments for the infertility caused by the condition in either sex.
Androgen deficiency is not usually checked for diagnosis in healthy women.
Early histological features expected to be seen on examination of gynecomastic tissue attained by fine-needle aspiration biopsy include the following: proliferation and lengthening of the ducts, an increase in connective tissue, an increase in inflammation and swelling surrounding the ducts, and an increase in fibroblasts in the connective tissue. Chronic gynecomastia may show different histological features such as increased connective tissue fibrosis, an increase in the number of ducts, less inflammation than in the acute stage of gynecomastia, increased subareolar fat, and hyalinization of the stroma. When surgery is performed, the gland is routinely sent to the lab to confirm the presence of gynecomastia and to check for tumors under a microscope. The utility of pathologic examination of breast tissue removed from male adolescent gynecomastia patients has recently been questioned due to the rarity of breast cancer in this population.
Elevated serum follicle stimulating hormone (FSH) level measured on day three of the menstrual cycle. (First day of period flow is counted as day one. Spotting is not considered start of period.) If a lower value occurs from later testing, the highest value is considered the most predictive. FSH assays can differ somewhat so reference ranges as to what is normal, premenopausal or menopausal should be based on ranges provided by the laboratory doing the testing. Estradiol (E2) should also be measured as women who ovulate early may have elevated E2 levels above 80 pg/mL (due to early follicle recruitment, possibly due to a low serum inhibin B level) which will mask an elevated FSH level and give a false negative result.
High FSH strongly predicts poor IVF response in older women, less so in younger women. One study showed an elevated basal day-three FSH is correlated with diminished ovarian reserve in women aged over 35 years and is associated with poor pregnancy rates after treatment of ovulation induction(6% versus 42%).
The rates for spontaneous pregnancy in older women with elevated FSH levels have not been studied very well and the spontaneous pregnancy success rate, while low, may be underestimated due to non reporting bias, as most infertility clinics will not accept women over the age of forty with FSH levels in the premenopausal range or higher.
A woman can have a normal day-three FSH level yet still respond poorly to ovarian stimulation and hence can be considered to have poor reserve. Thus, another FSH-based test is often used to detect poor ovarian reserve: the clomid challenge test, also known as CCCT(clomiphene citrate challenge test).
Mammography is the method of choice for radiologic examination of male breast tissue in the diagnosis of gynecomastia when breast cancer is suspected on physical examination. However, since breast cancer is a rare cause of breast tissue enlargement in men, mammography is rarely needed. If mammography is performed and does not reveal findings suggestive of breast cancer, further imaging is not typically necessary. If a tumor of the adrenal glands or the testes is thought to be responsible for the gynecomastia, ultrasound examination of these structures may be performed.
Pre- and post-testicular azoospermia are frequently correctible, while testicular azoospermia is usually permanent. In the former the cause of the azoospermia needs to be considered and it opens up possibilities to manage this situation directly. Thus men with azoospermia due to hyperprolactinemia may resume sperm production after treatment of hyperprolactinemia or men whose sperm production is suppressed by exogenous androgens are expected to produce sperm after cessation of androgen intake. In situations where the testes are normal but unstimulated, gonadotropin therapy can be expected to induce sperm production.
A major advancement in recent years has been the introduction of IVF with ICSI which allows successful fertilization even with immature sperm or sperm obtained directly from testicular tissue. IVF-ICSI allows for pregnancy in couples where the man has irreversible testicular azoospermia as long as it is possible to recover sperm material from the testes. Thus men with non-mosaic Klinefelter's syndrome have fathered children using IVF-ICSI. Pregnancies have been achieved in situations where azoospermia was associated with cryptorchism and sperm where obtained by testicular sperm extraction (TESE).
In men with posttesticular azoospermia a number of approaches are available. For obstructive azoospermia IVF-ICSI or surgery can be used and individual factors need to be considered for the choice of treatment. Medication may be helpful for retrograde ejaculation.
Treatment of HH may consist of administration of either a GnRH agonist or a gonadotropin formulation in the case of primary HH and treatment of the root cause (e.g., a tumor) of the symptoms in the case of secondary HH. Alternatively, hormone replacement therapy with androgens and estrogens in males and females, respectively, may be employed.
Due to the inability of the streak gonads to produce sex hormones (both estrogens and androgens), most of the secondary sex characteristics do not develop. This is especially true of estrogenic changes such as breast development, widening of the pelvis and hips, and menstrual periods. As the adrenal glands can make limited amounts of androgens and are not affected by this syndrome, most of these persons will develop pubic hair, though it often remains sparse.
Evaluation of delayed puberty usually reveals elevation of gonadotropins, indicating that the pituitary is providing the signal for puberty but the gonads are failing to respond. The next steps of the evaluation usually include checking a karyotype and imaging of the pelvis. The karyotype reveals XY chromosomes and the imaging demonstrates the presence of a uterus but no ovaries (the streak gonads are not usually seen by most imaging). Although an XY karyotype can also indicate a person with complete androgen insensitivity syndrome, the absence of breasts, and the presence of a uterus and pubic hair exclude the possibility. At this point it is usually possible for a physician to make a diagnosis of Swyer syndrome.
Treatment may consist of hormone replacement therapy with androgens in either sex. Alternatively, gonadotropin-releasing hormone (GnRH)/GnRH agonists or gonadotropins may be given (in the case of "hypogonadotropic" hypoandrogenism). The Food and Drug Administration (FDA) stated in 2015 that neither the benefits nor the safety of testosterone have been established for low testosterone levels due to aging. The FDA has required that testosterone pharmaceutical labels include warning information about the possibility of an increased risk of heart attacks and stroke.