Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
According to Clinicaltrials.gov, there are no current studies on hyperglycerolemia.
Clinicaltrials.gov is a service of the U.S. National Institutes of Health. Recent research shows patients with high concentrations of blood triglycerides have an increased risk of coronary heart disease. Normally, a blood glycerol test is not ordered. The research was about a child having elevated levels of triglycerides when in fact the child had glycerol kinase deficiency. This condition is known as pseudo-hypertriglyceridemia, a falsely elevated condition of triglycerides. Another group treated patients with elevated concentrations of blood triglycerides with little or no effect on reducing the triglycerides. A few laboratories can test for high concentrations of glycerol, and some laboratories can compare a glycerol-blanked triglycerides assay with the routine non-blanked method. Both cases show how the human body may exhibit features suggestive of a medical disorder when in fact it is another medical condition causing the issue.
Hyperglycerolemia is caused by excess glycerol in the bloodstream. People with more severe cases of glycerol kinase deficiency may have a deletion of the GK gene that is large enough to see by routine cytogenetic evaluation. It has been found an x-linked recessive inheritance pattern of the trait when a study was conducted on a grandfather and grandson. In addition, there is a high prevalence of [diabetes mellitus] in this family. There is no known prevention for hyperglycerolemia because it is caused by a mutation or deletion of an individual's genetic code.
Diagnosis of canine phosphofructokinase deficiency is similar to the blood tests used in diagnosis of humans. Blood tests measuring the total erythrocyte PFK activity are used for definitive diagnosis in most cases. DNA testing for presence of the condition is also available.
Treatment mostly takes the form of supportive care. Owners are advised to keep their dogs out of stressful or exciting situations, avoid high temperature environments and strenuous exercise. It is also important for the owner to be alert for any signs of a hemolytic episode. Dogs carrying the mutated form of the gene should be removed from the breeding population, in order to reduce incidence of the condition.
A diagnosis can be made through a muscle biopsy that shows excess glycogen accumulation. Glycogen deposits in the muscle are a result of the interruption of normal glucose breakdown that regulates the breakdown of glycogen. Blood tests are conducted to measure the activity of phosphofructokinase, which would be lower in a patient with this condition. Patients also commonly display elevated levels of creatine kinase.
Treatment usually entails that the patient refrain from strenuous exercise to prevent muscle pain and cramping. Avoiding carbohydrates is also recommended.
A ketogenic diet also improved the symptoms of an infant with PFK deficiency. The logic behind this treatment is that the low-carb high fat diet forces the body to use fatty acids as a primary energy source instead of glucose. This bypasses the enzymatic defect in glycolysis, lessening the impact of the mutated PFKM enzymes. This has not been widely studied enough to prove if it is a viable treatment, but testing is continuing to explore this option.
Genetic testing to determine whether or not a person is a carrier of the mutated gene is also available.
Liver biopsy for microscopic analysis and enzyme assay is required for definitive diagnosis. Diagnosis may include linkage analysis in families with affected members and sequencing of the entire coding region of the GSY2 gene for mutations.
The diagnosis of glycogen storage disease IX consists of the following:
- Complete blood count
- Urinalysis
- Histological study of the liver (via biopsy)
- Genetic testing
- Physical exam
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
There are two types of this inherited condition, "glycogen storage disease IXa1" and "glycogen storage disease IXa2" that affect the liver of an individual. Mutations in PHKA2 have been seen in individuals with glycogen storage disease IXa2.
Screening for elevated galactose levels may detect GALE deficiency or dysfunction in infants, and mutation studies for GALE are clinically available.
Serum glucose levels are measured to document the degree of hypoglycemia. Serum electrolytes calculate the anion gap to determine presence of metabolic acidosis; typically, patients with glycogen-storage disease type 0 (GSD-0) have an anion gap in the reference range and no acidosis. See the Anion Gap calculator.
Serum lipids (including triglyceride and total cholesterol) may be measured. In patients with glycogen-storage disease type 0, hyperlipidemia is absent or mild and proportional to the degree of fasting.
Urine (first voided specimen with dipstick test for ketones and reducing substances) may be analyzed. In patients with glycogen-storage disease type 0, urine ketones findings are positive, and urine-reducing substance findings are negative. However, urine-reducing substance findings are positive (fructosuria) in those with fructose 1-phosphate aldolase deficiency (fructose intolerance).
Serum lactate is in reference ranges in fasting patients with glycogen-storage disease type 0.
Liver function studies provide evidence of mild hepatocellular damage in patients with mild elevations of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels.Plasma amino-acid analysis shows plasma alanine levels as in reference ranges during a fast.
Treatment is depended on the type of glycogen storage disease. E.g. GSD I is typically treated with frequent small meals of carbohydrates and cornstarch to prevent low blood sugar, while other treatments may include allopurinol and human granulocyte colony stimulating factor.
The diagnosis of pyruvate kinase deficiency can be done by full blood counts (differential blood counts) and reticulocyte counts. Other methods include direct enzyme assays, which can determine pyruvate kinase levels in erythrocytes separated by density centrifugation, as well as direct DNA sequencing. For the most part when dealing with pyruvate kinase deficiency, these two diagnostic techniques are complementary to each other as they both contain their own flaws. Direct enzyme assays can diagnose the disorder and molecular testing confirms the diagnosis or vice versa. Furthermore, tests to determine bile salts (bilirubin) can be used to see whether the gall bladder has been compromised.
There is some laboratory tests that may aid in diagnosis of GSD-V. A muscle biopsy will note the absence of myophosphorylase in muscle fibers. In some cases, acid-Schiff stained glycogen can be seen with microscopy.
Genetic sequencing of the PYGM gene (which codes for the muscle isoform of glycogen phosphorylase) may be done to determine the presence of gene mutations, determining if McArdle's is present. This type of testing is considerably less invasive than a muscle biopsy.
The physician can also perform an ischemic forearm exercise test as described above. Some findings suggest a nonischemic test could be performed with similar results. The nonischemic version of this test would involve not cutting off the blood flow to the exercising arm. Findings consistent with McArdle’s disease would include a failure of lactate in venous blood and exaggerated ammonia levels. These findings would indicate a severe muscle glycolytic block. Ammonia arises from the impaired buffering of ADP, which leads to an increase in AMP concentration resulting in an increase in AMP deamination.
Physicians may also check resting levels of creatine kinase, which are moderately increased in 90% of patients. In some, the level is increased by multitudes - a person without GSD-V will have a CK between 60 and 400IU/L, while a person with the syndrome may have a level of 5,000 IU/L at rest, and may increase to 35,000 IU/L or more with muscle exertion. This can help distinguish McArdle's syndrome from carnitine palmitoyltransferase II deficiency (CPT-II), a lipid-based metabolic disorder which prevents fatty acids from being transported into mitochondria for use as an energy source. Also, serum electrolytes and endocrine studies (such as thyroid function, parathyroid function and growth hormone levels) will also be completed. Urine studies are required only if rhabdomyolysis is suspected. Urine volume, urine sediment and myoglobin levels would be ascertained. If rhabdomyolysis is suspected, serum myoglobin, creatine kinase, lactate dehydrogenase, electrolytes and renal function will be checked.
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.
Overall, according to a study in British Columbia, approximately 2.3 children per 100,000 births (1 in 43,000) have some form of glycogen storage disease. In the United States, they are estimated to occur in 1 per 20,000–25,000 births. Dutch incidence rate is estimated to be 1 per 40,000 births.
2,4 Dienoyl-CoA reductase deficiency is an inborn error of metabolism resulting in defective fatty acid oxidation caused by a deficiency of the enzyme 2,4 Dienoyl-CoA reductase. Lysine degradation is also affected in this disorder leading to hyperlysinemia. The disorder is inherited in an autosomal recessive manner, meaning an individual must inherit mutations in "NADK2," located at 5p13.2 from both of their parents. NADK2 encodes the mitochondrial NAD kinase. A defect in this enzyme leads to deficient mitochondrial nicotinamide adenine dinucleotide phosphate levels. 2,4 Dienoyl-CoA reductase, but also lysine degradation are performed by NADP-dependent oxidoreductases explaining how NADK2 deficiency can lead to multiple enzyme defects.
2,4-Dienoyl-CoA reductase deficiency was initially described in 1990 based on a single case of a black female who presented with persistent hypotonia. Laboratory investigations revealed elevated lysine, low levels of carnitine and an abnormal acylcarnitine profile in urine and blood. The abnormal acylcarnitine species was eventually identified as 2-trans,4-cis-decadienoylcarnitine, an intermediate of linoleic acid metabolism. The index case died of respiratory failure at four months of age. Postmortem enzyme analysis on liver and muscle samples revealed decreased 2,4-dienoyl-CoA reductase activity when compared to normal controls. A second case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy was reported in 2014.
2,4-Dienoyl-CoA reductase deficiency was included as a secondary condition in the American College of Medical Genetics Recommended Uniform Panel for newborn screening. Its status as a secondary condition means there was not enough evidence of benefit to include it as a primary target, but it may be detected during the screening process or as part of a differential diagnosis when detecting conditions included as primary target. Despite its inclusion in newborn screening programs in several states for a number of years, no cases have been identified via neonatal screening.
Glycerol Kinase Deficiency causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. This excess of glycerol in bodily fluids can lead to many more potentially dangerous symptoms. Common symptoms include vomiting and lethargy. These tend to be the only symptoms, if any, present in adult GKD which has been found to present with fewer symptoms than infant or juvenile GKD. When GKD is accompanied by Duchenne Muscular Dystrophy and Adrenal Hypoplasia Congenita, also caused by mutations on the Xp21 chromosome, the symptoms can become much more severe. Symptoms visible at or shortly after birth include:
- cryptorchidism
- strabismus
- seizures
Some other symptoms that become more noticeable with time would be:
- metabolic acidosis
- hypoglycemia
- adrenal cortex insufficiency
- learning disabilities
- osteoporosis
- myopathy
Many of the physically visible symptoms, such as cryptorchidism, strabismus, learning disabilities, and myopathy, tend to have an added psychological effect on the subject due to the fact that they can set him or her apart from those without GKD. Cryptorchidism, the failure of one or both of the testes to descend to the scrotum, has been known to lead to sexual identity confusion amongst young boys because it is such a major physiological anomaly. Strabismus is the misalignment of one’s eyes. Typically, one is focused but the other is “lazy” and is directed inward or out ward (up and down is less common but does occur).
A genetic test is available for Type 1 PSSM. This test requires a blood or hair sample, and is less-invasive than muscle biopsy. However, it may be less useful for breeds that are more commonly affected by Type 2 PSSM, such as light horse breeds. Often a muscle biopsy is recommended for horses displaying clinical signs of PSSM but who have negative results for GYS1 mutation.
A muscle biopsy may be taken from the semimembranosis or semitendinosis (hamstring) muscles. The biopsy is stained for glycogen, and the intensity of stain uptake in the muscle, as well as the presence of any inclusions, helps to determine the diagnosis of PSSM. This test is the only method for diagnosing Type 2 PSSM. Horses with Type 1 PSSM will usually have between 1.5-2 times the normal levels of glycogen in their skeletal muscle. While abnormalities indicating muscle damage can be seen on histologic sections of muscle as young as 1 month of age, abnormal polysaccharide accumulation may take up to 3 years to develop.
Enolase Deficiency is a rare genetic disorder of glucose metabolism. Partial deficiencies have been observed in several caucasian families. The deficiency is transmitted through an autosomal dominant inheritance pattern. The gene for Enolase 1 has been localized to Chromosome 1 in humans. Enolase deficiency, like other glycolytic enzyme deficiences, usually manifests in red blood cells as they rely entirely on anaerobic glycolysis. Enolase deficiency is associated with a spherocytic phenotype and can result in hemolytic anemia, which is responsible for the clinical signs of Enolase deficiency.
Supervised exercise programs have been shown in small studies to improve exercise capacity by several measures.
Oral sucrose treatment (for example a sports drink with 75 grams of sucrose in 660 ml.) taken 30 minutes prior to exercise has been shown to help improve exercise tolerance including a lower heart rate and lower perceived level of exertion compared with placebo.
There is no treatment for MKD. But, the inflammation and the other effects can be reduced to a certain extent.
- IL-1 targeting drugs can be used to reduce the effects of the disorder. Anakinra is antagonist to IL-1 receptors. Anakinra binds the IL-1 receptor, preventing the actions of both IL-1α and IL-1β, and it has been proved to reduce the clinical and biochemical inflammation in MKD. It can effectively decreases the frequency as well as the severity of inflammatory attacks when used on a daily basis. Disadvantages with the usage of this drug are occurrence of painful injection site reaction and as the drug is discontinued in the near future the febrile attacks start. (Examined in a 12-year-old patient).
- Canakinumab is a long acting monoclonal antibody which is directed against IL-1β has shown to be effective in reducing both frequency and severity in patients suffering from mild and severe MKD in case reports and observational case series. It reduces the physiological effects but the biochemical parameter still remain elevated (Galeotti et al. demonstrated that it is more effective than anakinra –considered 6 patients suffering from MKD).
- Anti-TNF therapy might be effective in MKD, but the effect is mostly partial and therapy failure and clinical deterioration have been described frequently in patients on infliximab or etanercept. A beneficial effect of human monoclonal anti-TNFα antibody adalimumab was seen in a small number of MKD patients.
- Most MKD patients are benefited by anti-IL-1 therapy. However, anti-IL-1-resistant disease may also occur. Example. tocilizumab (a humanized monoclonal antibody against the interleukin-6 (IL-6) receptor). This drug is used when the patients are unresponsive towards Anakinra. (Shendi et al. treated a young woman in whom anakinra was ineffective with tocilizumab). It was found that it was effective in reducing the biochemical and clinical inflammation [30].Stoffels et al. observed reduction of frequency and severity of the inflammatory attacks, although after several months of treatment one of these two patients persistently showed mild inflammatory symptoms in the absence of biochemical inflammatory markers.
- A beneficial effect of hematopoietic stem cell transplantation can be used in severe mevalonate kinase deficiency conditions (Improvement of cerebral myelinisation on MRI after allogenic stem cell transplantation was observed in one girl). But, liver transplantation did not influence febrile attacks in this patient.
Pyruvate kinase deficiency happens worldwide, however northern Europe, and Japan have many cases. The prevalence of pyruvate kinase deficiency is around 51 cases per million in the population (via gene frequency).
Characterised as a recessive disorder, symptomatic presentation requires the inheritance of aldolase A mutations from both parents. This conclusion is substantiated through the continuum type presentation witnessed, wherein heterozygous parents have intermediate enzyme activity. Structural instability has been indicated in four of the patients, with particular sensitivity to increased temperature according to direct enzymatic testing. This is exemplified in the early diagnosis of hereditary pyropoikilocytosis in the Sicilian girl. Deterioration with fever is likewise congruent. However, this direct relation has been disputed due to the increased overall metabolism and oxygen consumption also accompanying such maladies.
Sequence analysis has been conducted for three of the patients each revealing a distinct alteration at regions of typically high conservation. The conversion of the 128th aspartic acid to glycine causes conformational change according to CD spectral analysis and thermal lability in mutagenic analysis. Similarly the charge disruption created through the exchange of the negatively charged glutamic acid for positively charged lysine (at residue 209 of the E helix) disrupts interface interaction of the protein's subunits and therein destabilises its native tetrahedral configuration. The final case is unique in its non-homozygosity. A comparable maternal missense mutation wherein tyrosine is replaced by cysteine alters the carboxy-terminus due to its proximity to a crucial hinge structure. However, the paternal nonsense mutation at arginine 303 truncates the peptide. It is notable that Arg303 is required for enzymatic activity.
The initial 1973 case is atypical, in that no indication of aldolase A structural abnormality was found in isoelectric focusing, heat stabilization, electrophoresis or enzyme kinetics. It was concluded that either disordered regulation or a basic defect creating more rapid tetrameric inactivation were the most probable causes.
Detection of the disorder is possible with an organic acid analysis of the urine. Patients with SSADH deficiency will excrete high levels of GHB but this can be difficult to measure since GHB has high volatility and may be obscured on gas chromatography or mass spectrometry studies by a high urea peak. Other GABA metabolites can also be identified in urine such as glycine. Finally, succinic semialdehyde dehydrogenase levels can be measured in cultured leukocytes of the patient. This occurs due to the accumulation of 4,5-dihydroxyhexanoic acid which is normally undetectable in mammalian tissues but is characteristic of SSADH deficiency. This agent can eventually compromise the pathways of fatty acid, glycine, and pyruvate metabolism, and then become detectable in patients' leukocytes. Such enzyme levels can also be compared to non-affected parents and siblings.
Mevalonate kinase deficiency, also called mevalonic aciduria and hyper immunoglobin D syndrome is an autosomal recessive metabolic disorder that disrupts the biosynthesis of cholesterol and isoprenoids.
It is characterized by an elevated level of immunoglobin D in the blood.
The enzyme is involved in biosynthesis of cholesterols and isoprenoids. The enzyme is necessary for the conversion of mevalonate to mevalonate-5-phosphate in the presence of Mg2+ [Harper’s biochemistry manual]. Mevalonate kinase deficiency causes the accumulation of mevalonate in urine and hence the activity of the enzyme is again reduced Mevalonate kinase deficiency. It was first described as HIDS in 1984.